Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study

Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-05, Vol.37 (20), p.6292-6300
Hauptverfasser: Wang, Yang, Hayashi, Kentaro, Ootani, Yusuke, Bai, Shandan, Shimazaki, Tomomi, Higuchi, Yuji, Ozawa, Nobuki, Adachi, Koshi, De Barros Bouchet, Maria-Isabel, Martin, Jean Michel, Kubo, Momoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6300
container_issue 20
container_start_page 6292
container_title Langmuir
container_volume 37
creator Wang, Yang
Hayashi, Kentaro
Ootani, Yusuke
Bai, Shandan
Shimazaki, Tomomi
Higuchi, Yuji
Ozawa, Nobuki
Adachi, Koshi
De Barros Bouchet, Maria-Isabel
Martin, Jean Michel
Kubo, Momoji
description Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications.
doi_str_mv 10.1021/acs.langmuir.1c00727
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04084028v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524351250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-c0282c8646b457f410439adec8b9fcc1d8373074556921ff95fca1a54173f1c33</originalsourceid><addsrcrecordid>eNp9kclOwzAURS0EgjL8AUJewiLFY5Owq8pQUBESw9pyHbsYErvYCYIVv45LCktWlq_Ou2-4ABxiNMSI4FOp4rCWbtF0NgyxQign-QYYYE5QxguSb4IByhnNcjaiO2A3xheEUElZuQ12KC35iI3wAHzd-1pDb-DdFD7q0FgnW-sdtA7e2tYu0s8t4GWw6kdO4LmVjXdVVttXDScyzJPcuUoHOLWLZzjzsjqDY3jjrWvhg226uneUroIXH0sdbKNdK2v40HbV5z7YMrKO-mD97oGny4vHyTSb3V1dT8azTNKCtJlCpCCqSDPPGc8Nw4jRUlZaFfPSKIWrguY0rcv5qCTYmJIbJbHkDOfUYEXpHjjpfZ9lLZZpBhk-hZdWTMczsdIQQwVLXd5xYo97dhn8W6djKxobla7TtbXvoiCcMMox4SihrEdV8DEGbf68MRKrmESKSfzGJNYxpbKjdYdu3ujqr-g3lwSgHliVv_guuHSc_z2_ASSEoO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524351250</pqid></control><display><type>article</type><title>Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study</title><source>ACS Publications</source><creator>Wang, Yang ; Hayashi, Kentaro ; Ootani, Yusuke ; Bai, Shandan ; Shimazaki, Tomomi ; Higuchi, Yuji ; Ozawa, Nobuki ; Adachi, Koshi ; De Barros Bouchet, Maria-Isabel ; Martin, Jean Michel ; Kubo, Momoji</creator><creatorcontrib>Wang, Yang ; Hayashi, Kentaro ; Ootani, Yusuke ; Bai, Shandan ; Shimazaki, Tomomi ; Higuchi, Yuji ; Ozawa, Nobuki ; Adachi, Koshi ; De Barros Bouchet, Maria-Isabel ; Martin, Jean Michel ; Kubo, Momoji</creatorcontrib><description>Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.1c00727</identifier><identifier>PMID: 33956461</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Engineering Sciences</subject><ispartof>Langmuir, 2021-05, Vol.37 (20), p.6292-6300</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-c0282c8646b457f410439adec8b9fcc1d8373074556921ff95fca1a54173f1c33</citedby><cites>FETCH-LOGICAL-a382t-c0282c8646b457f410439adec8b9fcc1d8373074556921ff95fca1a54173f1c33</cites><orcidid>0000-0002-8759-0327 ; 0000-0003-2272-5152 ; 0000-0002-3310-1858 ; 0000-0002-3362-8633 ; 0000-0002-3873-5470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.1c00727$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.1c00727$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33956461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04084028$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Hayashi, Kentaro</creatorcontrib><creatorcontrib>Ootani, Yusuke</creatorcontrib><creatorcontrib>Bai, Shandan</creatorcontrib><creatorcontrib>Shimazaki, Tomomi</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Adachi, Koshi</creatorcontrib><creatorcontrib>De Barros Bouchet, Maria-Isabel</creatorcontrib><creatorcontrib>Martin, Jean Michel</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><title>Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications.</description><subject>Engineering Sciences</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kclOwzAURS0EgjL8AUJewiLFY5Owq8pQUBESw9pyHbsYErvYCYIVv45LCktWlq_Ou2-4ABxiNMSI4FOp4rCWbtF0NgyxQign-QYYYE5QxguSb4IByhnNcjaiO2A3xheEUElZuQ12KC35iI3wAHzd-1pDb-DdFD7q0FgnW-sdtA7e2tYu0s8t4GWw6kdO4LmVjXdVVttXDScyzJPcuUoHOLWLZzjzsjqDY3jjrWvhg226uneUroIXH0sdbKNdK2v40HbV5z7YMrKO-mD97oGny4vHyTSb3V1dT8azTNKCtJlCpCCqSDPPGc8Nw4jRUlZaFfPSKIWrguY0rcv5qCTYmJIbJbHkDOfUYEXpHjjpfZ9lLZZpBhk-hZdWTMczsdIQQwVLXd5xYo97dhn8W6djKxobla7TtbXvoiCcMMox4SihrEdV8DEGbf68MRKrmESKSfzGJNYxpbKjdYdu3ujqr-g3lwSgHliVv_guuHSc_z2_ASSEoO0</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Wang, Yang</creator><creator>Hayashi, Kentaro</creator><creator>Ootani, Yusuke</creator><creator>Bai, Shandan</creator><creator>Shimazaki, Tomomi</creator><creator>Higuchi, Yuji</creator><creator>Ozawa, Nobuki</creator><creator>Adachi, Koshi</creator><creator>De Barros Bouchet, Maria-Isabel</creator><creator>Martin, Jean Michel</creator><creator>Kubo, Momoji</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8759-0327</orcidid><orcidid>https://orcid.org/0000-0003-2272-5152</orcidid><orcidid>https://orcid.org/0000-0002-3310-1858</orcidid><orcidid>https://orcid.org/0000-0002-3362-8633</orcidid><orcidid>https://orcid.org/0000-0002-3873-5470</orcidid></search><sort><creationdate>20210525</creationdate><title>Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study</title><author>Wang, Yang ; Hayashi, Kentaro ; Ootani, Yusuke ; Bai, Shandan ; Shimazaki, Tomomi ; Higuchi, Yuji ; Ozawa, Nobuki ; Adachi, Koshi ; De Barros Bouchet, Maria-Isabel ; Martin, Jean Michel ; Kubo, Momoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-c0282c8646b457f410439adec8b9fcc1d8373074556921ff95fca1a54173f1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Hayashi, Kentaro</creatorcontrib><creatorcontrib>Ootani, Yusuke</creatorcontrib><creatorcontrib>Bai, Shandan</creatorcontrib><creatorcontrib>Shimazaki, Tomomi</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Adachi, Koshi</creatorcontrib><creatorcontrib>De Barros Bouchet, Maria-Isabel</creatorcontrib><creatorcontrib>Martin, Jean Michel</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Hayashi, Kentaro</au><au>Ootani, Yusuke</au><au>Bai, Shandan</au><au>Shimazaki, Tomomi</au><au>Higuchi, Yuji</au><au>Ozawa, Nobuki</au><au>Adachi, Koshi</au><au>De Barros Bouchet, Maria-Isabel</au><au>Martin, Jean Michel</au><au>Kubo, Momoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-05-25</date><risdate>2021</risdate><volume>37</volume><issue>20</issue><spage>6292</spage><epage>6300</epage><pages>6292-6300</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33956461</pmid><doi>10.1021/acs.langmuir.1c00727</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8759-0327</orcidid><orcidid>https://orcid.org/0000-0003-2272-5152</orcidid><orcidid>https://orcid.org/0000-0002-3310-1858</orcidid><orcidid>https://orcid.org/0000-0002-3362-8633</orcidid><orcidid>https://orcid.org/0000-0002-3873-5470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2021-05, Vol.37 (20), p.6292-6300
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_04084028v1
source ACS Publications
subjects Engineering Sciences
title Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20OH%20Termination%20in%20Mitigating%20Friction%20of%20Diamond-like%20Carbon%20under%20High%20Load:%20A%20Joint%20Simulation%20and%20Experimental%20Study&rft.jtitle=Langmuir&rft.au=Wang,%20Yang&rft.date=2021-05-25&rft.volume=37&rft.issue=20&rft.spage=6292&rft.epage=6300&rft.pages=6292-6300&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.1c00727&rft_dat=%3Cproquest_hal_p%3E2524351250%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524351250&rft_id=info:pmid/33956461&rfr_iscdi=true