Role of OH Termination in Mitigating Friction of Diamond-like Carbon under High Load: A Joint Simulation and Experimental Study
Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemic...
Gespeichert in:
Veröffentlicht in: | Langmuir 2021-05, Vol.37 (20), p.6292-6300 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c00727 |