Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers

The efficacy of the routinely used anti-HIV (Human Immunodeficiency Virus) therapy based on nucleoside reverse transcriptase inhibitors (NRTIs) is limited by the poor cellular uptake of the active triphosphorylated metabolites and the low efficiency of intracellular phosphorylation of their prodrugs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017, Vol.5 (43), p.8563-8569
Hauptverfasser: Marcos-Almaraz, M T, Gref, R, Agostoni, V, Kreuz, C, Clayette, P, Serre, C, Couvreur, P, Horcajada, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficacy of the routinely used anti-HIV (Human Immunodeficiency Virus) therapy based on nucleoside reverse transcriptase inhibitors (NRTIs) is limited by the poor cellular uptake of the active triphosphorylated metabolites and the low efficiency of intracellular phosphorylation of their prodrugs. Nanoparticles of iron(iii) polycarboxylate Metal-Organic Frameworks (nanoMOFs) are promising drug nanocarriers. In this study, two active triphosphorylated NRTIs, azidothymidine triphosphate (AZT-Tp) and lamivudine triphosphate (3TC-Tp), were successfully co-encapsulated into the biocompatible mesoporous iron(iii) trimesate MIL-100(Fe) nanoMOF in order to improve anti-HIV therapies. The drug loaded nanoMOFs could be stored for up to 2-months and reconstituted after freeze drying, retaining similar physicochemical properties. Their antiretroviral activity was evidenced in vitro on monocyte-derived macrophages experimentally infected with HIV, making these co-encapsulated nanosystems excellent HIV-microbicide candidates.
ISSN:2050-750X
2050-7518
DOI:10.1039/c7tb01933e