Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160
One of the most promising technologies, with a low energy penalty, for CO2 capture from diverse gas mixtures is based on the adsorption process using adsorbents. Many efforts are still currently deployed to search for water stable porous metal–organic frameworks (MOFs) with high CO2 affinity combine...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2017-12, Vol.121 (48), p.26822-26832 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most promising technologies, with a low energy penalty, for CO2 capture from diverse gas mixtures is based on the adsorption process using adsorbents. Many efforts are still currently deployed to search for water stable porous metal–organic frameworks (MOFs) with high CO2 affinity combined with large CO2 uptake. In this context, we have selected the water stable and easily scalable Al-based MOF MIL-160 showing an ultramicroporosity and potential interacting sites (hydroxyl and furan), both features being a priori relevant to favor the selective adsorption of CO2 over other gases including H2, N2, CH4, and CO. Density functional theory (DFT) and force-field-based grand-canonical Monte Carlo (GCMC) simulations were first coupled to predict the strength of host/guest interactions and the adsorption isotherms for all guests as single components and binary mixtures. This computational approach reveals the promises of this solid for the selective adsorption of CO2 with respect to these other investigated gases, controlled by a combination of thermodynamics and confinement effects. These predicted performances were further supported by real-coadsorption measurements performed on shaped samples which indicated that MIL-160(Al) shows promising performance for the selective CO2 capture in post- and pre-combustion conditions. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.7b08856 |