Antioxidant effect of phenolic compounds (PC) at different concentrations in IEC-6 cells: A spectroscopic analysis
Phenolic compounds (PC) have been proposed as natural antioxidant agents that protect cells against oxidative stress-related diseases. Nonetheless, their low bioavailability forecasts controversy about mechanisms on their in vivo scavenging activity against reactive oxygen species (ROS). It has been...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2020-02, Vol.227, p.117570, Article 117570 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phenolic compounds (PC) have been proposed as natural antioxidant agents that protect cells against oxidative stress-related diseases. Nonetheless, their low bioavailability forecasts controversy about mechanisms on their in vivo scavenging activity against reactive oxygen species (ROS). It has been proposed that PC reduce directly ROS concentration. An alternative or complementary action of PC could be the activation of the cell’s antioxidant pathway, involving the regulation of gene expression, like that initiated by the Nrf2 transcription factor. To date there is not enough experimental data to support or discard this possibility. In the present study, we evaluated the use of several PC to prevent peroxidation of macromolecules and to elicit the activation of the Nrf2 transcription factor in H2O2-stresed IEC-6 enterocytic cell line. Synchrotron microspectroscopy demonstrated that PC compounds protected proteins, lipids and nucleic acids against oxidation induced by H2O2. Immunofluorescence results showed that treatment with quercetin (Qc), catechin (Cat) and capsaicin (Cap) induced the translocation of Nrf2 into the nucleus, at the same level as did H2O2 treatment, thus mimicking the action of the endogenous cell response to peroxidation. Even though the detailed mechanism still needs to be elucidated, we demonstrated the activation of Nrf2 by PCs in response to oxidative stress.
[Display omitted]
•FTIRM spectroscopy was used to evaluate oxidative stress markers.•FTIRM data shows that polyphenols have a protective effect against H2O2 oxidative stress.•Immunofluorescence shows a reduction of Nrf2 translocation in polyphenol treatments.•Higher polyphenol concentrations showed better protection against oxidative stress. |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2019.117570 |