Reconfigurable design of a thermo-optically addressed liquid-crystal phase modulator by a neural network

We present a machine learning approach to program the light phase modulation function of an innovative thermo-optically addressed, liquid-crystal based, spatial light modulator (TOA-SLM). The designed neural network is trained with a little amount of experimental data and is enabled to efficiently g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-04, Vol.31 (8), p.12597-12608
Hauptverfasser: Barland, Stéphane, Ramousse, Loic, Chériaux, Gilles, Femy, Vincent, Claudet, Cyrille, Jullien, Aurélie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a machine learning approach to program the light phase modulation function of an innovative thermo-optically addressed, liquid-crystal based, spatial light modulator (TOA-SLM). The designed neural network is trained with a little amount of experimental data and is enabled to efficiently generate prescribed low-order spatial phase distortions. These results demonstrate the potential of neural network-driven TOA-SLM technology for ultrabroadband and large aperture phase modulation, from adaptive optics to ultrafast pulse shaping.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.483141