Convergence rates for sums-of-squares hierarchies with correlative sparsity

This work derives upper bounds on the convergence rate of the moment-sum-of-squares hierarchy with correlative sparsity for global minimization of polynomials on compact basic semialgebraic sets. The main conclusion is that both sparse hierarchies based on the Schmüdgen and Putinar Positivstellensät...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-03
Hauptverfasser: Korda, Milan, Magron, Victor, Ríos-Zertuche, Rodolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work derives upper bounds on the convergence rate of the moment-sum-of-squares hierarchy with correlative sparsity for global minimization of polynomials on compact basic semialgebraic sets. The main conclusion is that both sparse hierarchies based on the Schmüdgen and Putinar Positivstellensätze enjoy a polynomial rate of convergence that depends on the size of the largest clique in the sparsity graph but not on the ambient dimension. Interestingly, the sparse bounds outperform the best currently available bounds for the dense hierarchy when the maximum clique size is sufficiently small compared to the ambient dimension and the performance is measured by the running time of an interior point method required to obtain a bound on the global minimum of a given accuracy.
ISSN:0025-5610
1436-4646
1436-4646
DOI:10.1007/s10107-024-02071-6