Investigation Properties of Pervious and Water-Retaining Recycled Concrete to Mitigate Urban Heat Island Phenomena

The urban heat island (UHI) effect poses significant challenges to urban environmental quality and public health. Over the decades, research efforts have been made to develop various UHI mitigation strategies, including pavement materials, such as, water-retentive pavement, reflective pavement, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-03, Vol.15 (6), p.5384
Hauptverfasser: Haddad, Bechara, Karaky, Hamzé, Boutouil, Mohamed, Boudart, Bertrand, Sebaibi, Nassim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The urban heat island (UHI) effect poses significant challenges to urban environmental quality and public health. Over the decades, research efforts have been made to develop various UHI mitigation strategies, including pavement materials, such as, water-retentive pavement, reflective pavement, and pervious concrete. This paper focuses on the improvement of the hygric and water retention properties of pervious concrete to mitigate UHI phenomena. The hydric and hygroscopic tests were carried out under dry and wet conditions on four different pervious concretes, where natural aggregates were replaced with recycled aggregates at different mass percentages. The results show a significant improvement in these properties by increasing the amount of recycled aggregates incorporated in the mixtures. The mixes made from recycled aggregates alone showed an absorption that reached 75 L more than the control in one cubic meter under wet condition. With an upwelling capacity of up to 30 kg of retained water in a square meter under dry condition, these improvements in water performance represent this permeable concrete as a water retention pavement solution for UHI mitigation. Regarding the mechanical properties, a decrease of 50% in compressive strength was noted only when 100% of the recycled aggregate was incorporated, remaining at 20 MPa for other mixtures.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15065384