A review of tidal energy—Resource, feedbacks, and environmental interactions

The ocean contains a variety of renewable energy resources, little of which has been exploited. Here, we review both tidal range and tidal stream energy, with a focus on the resource, feedbacks, and environmental interactions. The review covers a wide range of timescales of relevance to tidal energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Renewable and Sustainable Energy 2021-11, Vol.13 (6)
Hauptverfasser: Neill, Simon P., Haas, Kevin A., Thiébot, Jérôme, Yang, Zhaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ocean contains a variety of renewable energy resources, little of which has been exploited. Here, we review both tidal range and tidal stream energy, with a focus on the resource, feedbacks, and environmental interactions. The review covers a wide range of timescales of relevance to tidal energy, from fortnightly (spring-neap) and semi-diurnal variability, down to array, and device-scale turbulence. When simulating the regional tidal energy resource, and to assess environmental impacts, it is necessary to account for feedbacks between the tidal array and the resource itself. We critically review various methods for simulating energy extraction, from insights gained through theoretical studies of “tidal fences” in idealized channels, to realistic three-dimensional model studies with complex geometry and arrays of turbines represented by momentum sinks and additional turbulence due to the presence of rotors and support structures. We discuss how variability can be reduced by developing multiple (aggregated) sites with a consideration of the enhanced phase diversity offered by exploiting less energetic tidal currents. This leads to future research questions that have not yet been explored in depth at first-generation tidal sites in relatively sheltered channels (e.g., the interaction of waves with currents). Such enhanced understanding of real sea conditions, including the effects of wind and waves, leads to our other identified primary future research direction—reduced uncertainties in turbulence predictions, including the development of realistic models that simulate the interaction between ambient turbulence and the turbulence resulting from multiple wakes, and changes to system-wide hydrodynamics, water quality, and sedimentation.
ISSN:1941-7012
1941-7012
DOI:10.1063/5.0069452