Phase harmonic correlations and convolutional neural networks
A major issue in harmonic analysis is to capture the phase dependence of frequency representations, which carries important signal properties. It seems that convolutional neural networks have found a way. Over time-series and images, convolutional networks often learn a first layer of filters that a...
Gespeichert in:
Veröffentlicht in: | Information and Inference: A Journal of the IMA 2020-09, Vol.9 (3), p.721-747 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major issue in harmonic analysis is to capture the phase dependence of frequency representations, which carries important signal properties. It seems that convolutional neural networks have found a way. Over time-series and images, convolutional networks often learn a first layer of filters that are well localized in the frequency domain, with different phases. We show that a rectifier then acts as a filter on the phase of the resulting coefficients. It computes signal descriptors that are local in space, frequency and phase. The nonlinear phase filter becomes a multiplicative operator over phase harmonics computed with a Fourier transform along the phase. We prove that it defines a bi-Lipschitz and invertible representation. The correlations of phase harmonics coefficients characterize coherent structures from their phase dependence across frequencies. For wavelet filters, we show numerically that signals having sparse wavelet coefficients can be recovered from few phase harmonic correlations, which provide a compressive representation. |
---|---|
ISSN: | 2049-8772 2049-8764 2049-8772 |
DOI: | 10.1093/imaiai/iaz019 |