Representation of gene regulation networks by hypothesis logic-based Boolean systems
Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic ( H ). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe a...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2023-03, Vol.79 (4), p.4556-4581 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4581 |
---|---|
container_issue | 4 |
container_start_page | 4556 |
container_title | The Journal of supercomputing |
container_volume | 79 |
creator | Siegel, Pierre Doncescu, Andrei Risch, Vincent Sené, Sylvain |
description | Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (
H
). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept,
ghost extensions
. Using
ghost extensions
, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms. |
doi_str_mv | 10.1007/s11227-022-04809-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04022466v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770322654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a5de5cae2c97d452f870e22accb23c216e9734e11c125a0040304ce6732602ba3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOCJw-rk0myaY-1qBUKgtRzSNPZ7dbtpiZbZf-9W1f05mmYx_cej8fYJYcbDqBvI-eIOgXEFOQIxqk6YgOutDi88pgNYIyQjpTEU3YW4wYApNBiwBYvtAsUqW5sU_o68XlSUE1JoGJf9VJNzacPbzFZtsm63flmTbGMSeWL0qVLG2mV3Hlfka2T2MaGtvGcneS2inTxc4fs9eF-MZ2l8-fHp-lknjohR01q1YqUs4RurFdSYT7SQIjWuSUKhzyjsRaSOHccle0agwDpKNMCM8ClFUN23eeubWV2odza0BpvSzObzM1B6yyIMss-eMde9ewu-Pc9xcZs_D7UXT2DWoNAzJTsKOwpF3yMgfLfWA7msLTplzZdrvle2qjOJHpT7OC6oPAX_Y_rC0s-gHo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770322654</pqid></control><display><type>article</type><title>Representation of gene regulation networks by hypothesis logic-based Boolean systems</title><source>SpringerLink Journals</source><creator>Siegel, Pierre ; Doncescu, Andrei ; Risch, Vincent ; Sené, Sylvain</creator><creatorcontrib>Siegel, Pierre ; Doncescu, Andrei ; Risch, Vincent ; Sené, Sylvain</creatorcontrib><description>Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (
H
). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept,
ghost extensions
. Using
ghost extensions
, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04809-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Asymptotic properties ; Boolean functions ; Compilers ; Computer Science ; Dynamical systems ; Interpreters ; Networks ; Processor Architectures ; Programming Languages ; Representations</subject><ispartof>The Journal of supercomputing, 2023-03, Vol.79 (4), p.4556-4581</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-a5de5cae2c97d452f870e22accb23c216e9734e11c125a0040304ce6732602ba3</cites><orcidid>0000-0003-1543-8147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04809-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04809-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04022466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegel, Pierre</creatorcontrib><creatorcontrib>Doncescu, Andrei</creatorcontrib><creatorcontrib>Risch, Vincent</creatorcontrib><creatorcontrib>Sené, Sylvain</creatorcontrib><title>Representation of gene regulation networks by hypothesis logic-based Boolean systems</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (
H
). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept,
ghost extensions
. Using
ghost extensions
, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Boolean functions</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Dynamical systems</subject><subject>Interpreters</subject><subject>Networks</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Representations</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOCJw-rk0myaY-1qBUKgtRzSNPZ7dbtpiZbZf-9W1f05mmYx_cej8fYJYcbDqBvI-eIOgXEFOQIxqk6YgOutDi88pgNYIyQjpTEU3YW4wYApNBiwBYvtAsUqW5sU_o68XlSUE1JoGJf9VJNzacPbzFZtsm63flmTbGMSeWL0qVLG2mV3Hlfka2T2MaGtvGcneS2inTxc4fs9eF-MZ2l8-fHp-lknjohR01q1YqUs4RurFdSYT7SQIjWuSUKhzyjsRaSOHccle0agwDpKNMCM8ClFUN23eeubWV2odza0BpvSzObzM1B6yyIMss-eMde9ewu-Pc9xcZs_D7UXT2DWoNAzJTsKOwpF3yMgfLfWA7msLTplzZdrvle2qjOJHpT7OC6oPAX_Y_rC0s-gHo</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Siegel, Pierre</creator><creator>Doncescu, Andrei</creator><creator>Risch, Vincent</creator><creator>Sené, Sylvain</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1543-8147</orcidid></search><sort><creationdate>20230301</creationdate><title>Representation of gene regulation networks by hypothesis logic-based Boolean systems</title><author>Siegel, Pierre ; Doncescu, Andrei ; Risch, Vincent ; Sené, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a5de5cae2c97d452f870e22accb23c216e9734e11c125a0040304ce6732602ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Boolean functions</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Dynamical systems</topic><topic>Interpreters</topic><topic>Networks</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegel, Pierre</creatorcontrib><creatorcontrib>Doncescu, Andrei</creatorcontrib><creatorcontrib>Risch, Vincent</creatorcontrib><creatorcontrib>Sené, Sylvain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegel, Pierre</au><au>Doncescu, Andrei</au><au>Risch, Vincent</au><au>Sené, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of gene regulation networks by hypothesis logic-based Boolean systems</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>79</volume><issue>4</issue><spage>4556</spage><epage>4581</epage><pages>4556-4581</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (
H
). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept,
ghost extensions
. Using
ghost extensions
, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04809-5</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1543-8147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2023-03, Vol.79 (4), p.4556-4581 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04022466v1 |
source | SpringerLink Journals |
subjects | Algorithms Asymptotic properties Boolean functions Compilers Computer Science Dynamical systems Interpreters Networks Processor Architectures Programming Languages Representations |
title | Representation of gene regulation networks by hypothesis logic-based Boolean systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20gene%20regulation%20networks%20by%20hypothesis%20logic-based%20Boolean%20systems&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Siegel,%20Pierre&rft.date=2023-03-01&rft.volume=79&rft.issue=4&rft.spage=4556&rft.epage=4581&rft.pages=4556-4581&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04809-5&rft_dat=%3Cproquest_hal_p%3E2770322654%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770322654&rft_id=info:pmid/&rfr_iscdi=true |