At least half of the leapfrog fullerene graphs have exponentially many Hamilton cycles

A fullerene graph is a 3‐connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the dual of the truncation of the given graph. A fullerene graph is a leapfrog if it can be obtained from another fullerene graph by the leapfrog transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-07, Vol.97 (3), p.382-392
Hauptverfasser: Kardoš, František, Mockovčiaková, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fullerene graph is a 3‐connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the dual of the truncation of the given graph. A fullerene graph is a leapfrog if it can be obtained from another fullerene graph by the leapfrog transformation. We prove that leapfrog fullerene graphs on n = 12 k − 6 vertices have at least 2 k Hamilton cycles.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22660