At least half of the leapfrog fullerene graphs have exponentially many Hamilton cycles
A fullerene graph is a 3‐connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the dual of the truncation of the given graph. A fullerene graph is a leapfrog if it can be obtained from another fullerene graph by the leapfrog transfor...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2021-07, Vol.97 (3), p.382-392 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fullerene graph is a 3‐connected cubic planar graph with pentagonal and hexagonal faces. The leapfrog transformation of a planar graph produces the dual of the truncation of the given graph. A fullerene graph is a leapfrog if it can be obtained from another fullerene graph by the leapfrog transformation. We prove that leapfrog fullerene graphs on
n
=
12
k
−
6 vertices have at least
2
k Hamilton cycles. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22660 |