Entanglement Entropy and Berezin–Toeplitz Operators

We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a conseq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-05, Vol.376 (1), p.521-554
Hauptverfasser: Charles, Laurent, Estienne, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 1
container_start_page 521
container_title Communications in mathematical physics
container_volume 376
creator Charles, Laurent
Estienne, Benoit
description We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.
doi_str_mv 10.1007/s00220-019-03625-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04005654v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398225390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-2886be941339356c6cc7b2176bebfcbb759a8b80a33f0475bdb88703314bcc643</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmBgMZzt24rFUQJEqdSmzZbtOSZUmwU6R0ol34A15ElyCYGM63en7f50-hC4J3BCA7DYAUAoYiMTABOW4P0IjkjKKQRJxjEYABDATRJyisxA2ACCpECPE7-tO1-vKbV3dJXHxTdsnul4ld867fVl_vn8sG9dWZbdPFq3zumt8OEcnha6Cu_iZY_T8cL-czvB88fg0ncyxZZx1mOa5ME6mhDHJuLDC2sxQksWjKawxGZc6NzloxgpIM25WJs8zYIykxlqRsjG6HnpfdKVaX26171WjSzWbzNXhBikAFzx9I5G9GtjWN687Fzq1aXa-ju8pymROKWcSIkUHyvomBO-K31oC6qBSDSpVVKm-Vao-htgQChGu187_Vf-T-gJKUnY9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398225390</pqid></control><display><type>article</type><title>Entanglement Entropy and Berezin–Toeplitz Operators</title><source>SpringerLink Journals</source><creator>Charles, Laurent ; Estienne, Benoit</creator><creatorcontrib>Charles, Laurent ; Estienne, Benoit</creatorcontrib><description>We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03625-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characteristic functions ; Classical and Quantum Gravitation ; Complex Systems ; Condensed Matter ; Entanglement ; Entropy ; Kernels ; Mathematical and Computational Physics ; Mathematical Physics ; Mathematics ; Mesoscopic Systems and Quantum Hall Effect ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Probability ; Quantum Physics ; Relativity Theory ; Smooth boundaries ; Spectral Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-05, Vol.376 (1), p.521-554</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-2886be941339356c6cc7b2176bebfcbb759a8b80a33f0475bdb88703314bcc643</citedby><cites>FETCH-LOGICAL-c353t-2886be941339356c6cc7b2176bebfcbb759a8b80a33f0475bdb88703314bcc643</cites><orcidid>0000-0002-3430-012X ; 0000-0003-2316-9661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03625-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03625-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://insep.hal.science/hal-04005654$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, Laurent</creatorcontrib><creatorcontrib>Estienne, Benoit</creatorcontrib><title>Entanglement Entropy and Berezin–Toeplitz Operators</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.</description><subject>Characteristic functions</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Kernels</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probability</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Smooth boundaries</subject><subject>Spectral Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmBgMZzt24rFUQJEqdSmzZbtOSZUmwU6R0ol34A15ElyCYGM63en7f50-hC4J3BCA7DYAUAoYiMTABOW4P0IjkjKKQRJxjEYABDATRJyisxA2ACCpECPE7-tO1-vKbV3dJXHxTdsnul4ld867fVl_vn8sG9dWZbdPFq3zumt8OEcnha6Cu_iZY_T8cL-czvB88fg0ncyxZZx1mOa5ME6mhDHJuLDC2sxQksWjKawxGZc6NzloxgpIM25WJs8zYIykxlqRsjG6HnpfdKVaX26171WjSzWbzNXhBikAFzx9I5G9GtjWN687Fzq1aXa-ju8pymROKWcSIkUHyvomBO-K31oC6qBSDSpVVKm-Vao-htgQChGu187_Vf-T-gJKUnY9</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Charles, Laurent</creator><creator>Estienne, Benoit</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></search><sort><creationdate>20200501</creationdate><title>Entanglement Entropy and Berezin–Toeplitz Operators</title><author>Charles, Laurent ; Estienne, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-2886be941339356c6cc7b2176bebfcbb759a8b80a33f0475bdb88703314bcc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characteristic functions</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Kernels</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probability</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Smooth boundaries</topic><topic>Spectral Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, Laurent</creatorcontrib><creatorcontrib>Estienne, Benoit</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, Laurent</au><au>Estienne, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement Entropy and Berezin–Toeplitz Operators</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>376</volume><issue>1</issue><spage>521</spage><epage>554</epage><pages>521-554</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03625-y</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-3430-012X</orcidid><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-05, Vol.376 (1), p.521-554
issn 0010-3616
1432-0916
language eng
recordid cdi_hal_primary_oai_HAL_hal_04005654v1
source SpringerLink Journals
subjects Characteristic functions
Classical and Quantum Gravitation
Complex Systems
Condensed Matter
Entanglement
Entropy
Kernels
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Mesoscopic Systems and Quantum Hall Effect
Operators (mathematics)
Physics
Physics and Astronomy
Probability
Quantum Physics
Relativity Theory
Smooth boundaries
Spectral Theory
Theoretical
title Entanglement Entropy and Berezin–Toeplitz Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20Entropy%20and%20Berezin%E2%80%93Toeplitz%20Operators&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Charles,%20Laurent&rft.date=2020-05-01&rft.volume=376&rft.issue=1&rft.spage=521&rft.epage=554&rft.pages=521-554&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03625-y&rft_dat=%3Cproquest_hal_p%3E2398225390%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398225390&rft_id=info:pmid/&rfr_iscdi=true