Entanglement Entropy and Berezin–Toeplitz Operators

We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a conseq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-05, Vol.376 (1), p.521-554
Hauptverfasser: Charles, Laurent, Estienne, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Berezin–Toeplitz operators on compact Kähler manifolds whose symbols are characteristic functions. When the support of the characteristic function has a smooth boundary, we prove a two-term Weyl law, the second term being proportional to the Riemannian volume of the boundary. As a consequence, we deduce the area law for the entanglement entropy of integer quantum Hall states. Another application is for the determinantal processes with correlation kernel the Bergman kernels of a positive line bundle: we prove that the number of points in a smooth domain is asymptotically normal.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03625-y