Acoustical monitoring of fish density, behavior, and growth rate in a tank
A challenge for the aquaculture community has long been the development of harmless techniques for monitoring fish in a tank. Acoustic telemetry has been used to monitor fish swimming behavior, and passive acoustics have been used to monitor fish feeding, but new techniques are needed to monitor non...
Gespeichert in:
Veröffentlicht in: | Aquaculture 2006-02, Vol.251 (2), p.314-323 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A challenge for the aquaculture community has long been the development of harmless techniques for monitoring fish in a tank. Acoustic telemetry has been used to monitor fish swimming behavior, and passive acoustics have been used to monitor fish feeding, but new techniques are needed to monitor non-invasively their numbers and growth rates. Recently, it has been demonstrated that the acoustical total scattering cross section of fish swimming in a tank can be measured from multiple reverberation time series. These measurements have been used successfully to estimate the number of fish in a tank in laboratory conditions, and to characterize their acoustical signatures. Here, we introduce a novel method for acoustically monitoring fish numerical density and behavior, and measuring their growth rates over long periods of time. These measurements can be performed remotely, without human interaction with the fish, and are harmless. To demonstrate the efficiency of these techniques, the number of sea bass, as well as the behaviors of sardines, rockfish and sea bass, in different tanks were monitored. Also, the growth rates of a group of starved sardines and a group of fed sardines were measured acoustically, over 1 month. For comparison, their average weight was measured once per week. |
---|---|
ISSN: | 0044-8486 1873-5622 |
DOI: | 10.1016/j.aquaculture.2005.06.018 |