Spectroscopy of a Bulk GaN Microcavity Grown on Si(111)
We report the experimental observation of the exciton–photon strong coupling regime in a GaN microcavity. The structure has been grown by molecular beam epitaxy on a Si(111) substrate. The upper mirror is a SiO 2 /Si 3 N 4 dielectric mirror and the silicon substrate acts as the bottom one. Angle res...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2005-07, Vol.44 (7R), p.4902 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the experimental observation of the exciton–photon strong coupling regime in a GaN microcavity. The structure has been grown by molecular beam epitaxy on a Si(111) substrate. The upper mirror is a SiO
2
/Si
3
N
4
dielectric mirror and the silicon substrate acts as the bottom one. Angle resolved reflectivity and photoluminescence experiments have allowed to demonstrate the exciton–photon strong coupling regime, characterized by a Rabi splitting of 31 meV at 5 K. From the modeling of experiments, the oscillator strengths of excitons A and B are evaluated and compared to the values previously published. Then, the design of the bulk microcavity is optimized in order to maintain the strong coupling regime at room temperature; our calculations predict a Rabi splitting of 33 meV at 300 K in this case. A second kind of structure based on GaN/AlGaN quantum wells is also proposed, leading to an expected splitting of 19 meV at 300 K. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.1143/JJAP.44.4902 |