Sharp, strong and unique minimizers for low complexity robust recovery

In this paper, we show the important roles of sharp minima and strong minima for robust recovery. We also obtain several characterizations of sharp minima for convex regularized optimization problems. Our characterizations are quantitative and verifiable especially for the case of decomposable norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and Inference: A Journal of the IMA 2023-04, Vol.12 (3), p.1461-1513
Hauptverfasser: Fadili, Jalal, Nghia, Tran T A, Tran, Trinh T T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show the important roles of sharp minima and strong minima for robust recovery. We also obtain several characterizations of sharp minima for convex regularized optimization problems. Our characterizations are quantitative and verifiable especially for the case of decomposable norm regularized problems including sparsity, group-sparsity and low-rank convex problems. For group-sparsity optimization problems, we show that a unique solution is a strong solution and obtains quantitative characterizations for solution uniqueness.
ISSN:2049-8772
2049-8764
2049-8772
DOI:10.1093/imaiai/iaad005