Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths
Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2023-04, Vol.70 (4), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on nuclear science |
container_volume | 70 |
creator | Morana, Adriana Roche, Martin Campanella, Cosimo Melin, Gilles Robin, Thierry Marin, Emmanuel Boukenter, Aziz Ouerdane, Youcef Girard, Sylvain |
description | Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, the lowest steady state radiation-induced attenuation (RIA) to high cumulated doses (> 10 kGy) at room temperature. In this work, we investigate how the RIA levels and kinetics of a radiation hardened F-doped single-mode optical fiber depend on the irradiation temperature. To achieve this, we performed a systematic study on the combined temperature (from -80°C to 80°C) and steady state X-ray radiation (up to 100 kGy) effects on a F-doped single-mode fiber with a high temperature acrylate coating in the infrared domain. We then discuss the basic mechanisms at the origin of the RIA and its temperature dependence. |
doi_str_mv | 10.1109/TNS.2023.3239986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03978741v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036134</ieee_id><sourcerecordid>2803036409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9003f702bb1eadac5b8abaa64f12b7285d35f54fe3566651aa684974e4acf9fd3</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhS0EEkvhzoGDJU4csrVjO7GPq8LSlRYqtYs4WpN43KZK7eA4lTjw3_F2K8RpNPO-9zTSI-Q9Z2vOmTk_fL9Z16wWa1ELY3Tzgqy4UrriqtUvyYoxrisjjXlN3szzfVmlYmpF_hzwYcIEeUlIP-OEwWHokUZPr8ENkIcYql1wS4-ObnLGsDzdjgDQ7bjENASsXJyKfjOE2xGrb9EhvZry0MNIt0OHiUKmu-ATXBfqJzziiOE2381vySsP44zvnucZ-bH9cri4rPZXX3cXm33Vi7rJlWFM-JbVXccRHPSq09ABNNLzumtrrZxQXkmPQjVNo3iRtDStRAm9N96JM_LplHsHo53S8ADpt40w2MvN3h5vTJhWt5I_8sJ-PLFTir8WnLO9j0sK5T1bayaYaCQzhWInqk9xnhP6f7Gc2WMhthRij4XY50KK5cPJMiDif3hJ5EKKv6y7h4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803036409</pqid></control><display><type>article</type><title>Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths</title><source>IEEE Electronic Library (IEL)</source><creator>Morana, Adriana ; Roche, Martin ; Campanella, Cosimo ; Melin, Gilles ; Robin, Thierry ; Marin, Emmanuel ; Boukenter, Aziz ; Ouerdane, Youcef ; Girard, Sylvain</creator><creatorcontrib>Morana, Adriana ; Roche, Martin ; Campanella, Cosimo ; Melin, Gilles ; Robin, Thierry ; Marin, Emmanuel ; Boukenter, Aziz ; Ouerdane, Youcef ; Girard, Sylvain</creatorcontrib><description>Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, the lowest steady state radiation-induced attenuation (RIA) to high cumulated doses (> 10 kGy) at room temperature. In this work, we investigate how the RIA levels and kinetics of a radiation hardened F-doped single-mode optical fiber depend on the irradiation temperature. To achieve this, we performed a systematic study on the combined temperature (from -80°C to 80°C) and steady state X-ray radiation (up to 100 kGy) effects on a F-doped single-mode fiber with a high temperature acrylate coating in the infrared domain. We then discuss the basic mechanisms at the origin of the RIA and its temperature dependence.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2023.3239986</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Engineering Sciences ; Fluorine ; Harsh environments ; High temperature ; Infrared radiation ; Irradiation ; Kinetic theory ; Optical fiber ; Optical fibers ; Radiation effects ; Radiation hardening ; radiation induced attenuation ; radiation resistant optical fibers ; Room temperature ; Silica ; Silicon dioxide ; Steady state ; Temperature ; Temperature dependence ; temperature effects ; Temperature measurement ; Wavelengths ; X-rays</subject><ispartof>IEEE transactions on nuclear science, 2023-04, Vol.70 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9003f702bb1eadac5b8abaa64f12b7285d35f54fe3566651aa684974e4acf9fd3</citedby><cites>FETCH-LOGICAL-c326t-9003f702bb1eadac5b8abaa64f12b7285d35f54fe3566651aa684974e4acf9fd3</cites><orcidid>0000-0002-7210-0014 ; 0000-0003-0454-7233 ; 0000-0003-4953-0224 ; 0000-0001-5383-9553 ; 0000-0001-7008-7322 ; 0000-0002-2842-6324 ; 0000-0001-8358-2947 ; 0000-0001-9850-5389 ; 0000-0002-9804-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10036134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03978741$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morana, Adriana</creatorcontrib><creatorcontrib>Roche, Martin</creatorcontrib><creatorcontrib>Campanella, Cosimo</creatorcontrib><creatorcontrib>Melin, Gilles</creatorcontrib><creatorcontrib>Robin, Thierry</creatorcontrib><creatorcontrib>Marin, Emmanuel</creatorcontrib><creatorcontrib>Boukenter, Aziz</creatorcontrib><creatorcontrib>Ouerdane, Youcef</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><title>Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, the lowest steady state radiation-induced attenuation (RIA) to high cumulated doses (> 10 kGy) at room temperature. In this work, we investigate how the RIA levels and kinetics of a radiation hardened F-doped single-mode optical fiber depend on the irradiation temperature. To achieve this, we performed a systematic study on the combined temperature (from -80°C to 80°C) and steady state X-ray radiation (up to 100 kGy) effects on a F-doped single-mode fiber with a high temperature acrylate coating in the infrared domain. We then discuss the basic mechanisms at the origin of the RIA and its temperature dependence.</description><subject>Attenuation</subject><subject>Engineering Sciences</subject><subject>Fluorine</subject><subject>Harsh environments</subject><subject>High temperature</subject><subject>Infrared radiation</subject><subject>Irradiation</subject><subject>Kinetic theory</subject><subject>Optical fiber</subject><subject>Optical fibers</subject><subject>Radiation effects</subject><subject>Radiation hardening</subject><subject>radiation induced attenuation</subject><subject>radiation resistant optical fibers</subject><subject>Room temperature</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Steady state</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>temperature effects</subject><subject>Temperature measurement</subject><subject>Wavelengths</subject><subject>X-rays</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkUFv1DAQhS0EEkvhzoGDJU4csrVjO7GPq8LSlRYqtYs4WpN43KZK7eA4lTjw3_F2K8RpNPO-9zTSI-Q9Z2vOmTk_fL9Z16wWa1ELY3Tzgqy4UrriqtUvyYoxrisjjXlN3szzfVmlYmpF_hzwYcIEeUlIP-OEwWHokUZPr8ENkIcYql1wS4-ObnLGsDzdjgDQ7bjENASsXJyKfjOE2xGrb9EhvZry0MNIt0OHiUKmu-ATXBfqJzziiOE2381vySsP44zvnucZ-bH9cri4rPZXX3cXm33Vi7rJlWFM-JbVXccRHPSq09ABNNLzumtrrZxQXkmPQjVNo3iRtDStRAm9N96JM_LplHsHo53S8ADpt40w2MvN3h5vTJhWt5I_8sJ-PLFTir8WnLO9j0sK5T1bayaYaCQzhWInqk9xnhP6f7Gc2WMhthRij4XY50KK5cPJMiDif3hJ5EKKv6y7h4s</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Morana, Adriana</creator><creator>Roche, Martin</creator><creator>Campanella, Cosimo</creator><creator>Melin, Gilles</creator><creator>Robin, Thierry</creator><creator>Marin, Emmanuel</creator><creator>Boukenter, Aziz</creator><creator>Ouerdane, Youcef</creator><creator>Girard, Sylvain</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7210-0014</orcidid><orcidid>https://orcid.org/0000-0003-0454-7233</orcidid><orcidid>https://orcid.org/0000-0003-4953-0224</orcidid><orcidid>https://orcid.org/0000-0001-5383-9553</orcidid><orcidid>https://orcid.org/0000-0001-7008-7322</orcidid><orcidid>https://orcid.org/0000-0002-2842-6324</orcidid><orcidid>https://orcid.org/0000-0001-8358-2947</orcidid><orcidid>https://orcid.org/0000-0001-9850-5389</orcidid><orcidid>https://orcid.org/0000-0002-9804-8971</orcidid></search><sort><creationdate>20230401</creationdate><title>Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths</title><author>Morana, Adriana ; Roche, Martin ; Campanella, Cosimo ; Melin, Gilles ; Robin, Thierry ; Marin, Emmanuel ; Boukenter, Aziz ; Ouerdane, Youcef ; Girard, Sylvain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9003f702bb1eadac5b8abaa64f12b7285d35f54fe3566651aa684974e4acf9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attenuation</topic><topic>Engineering Sciences</topic><topic>Fluorine</topic><topic>Harsh environments</topic><topic>High temperature</topic><topic>Infrared radiation</topic><topic>Irradiation</topic><topic>Kinetic theory</topic><topic>Optical fiber</topic><topic>Optical fibers</topic><topic>Radiation effects</topic><topic>Radiation hardening</topic><topic>radiation induced attenuation</topic><topic>radiation resistant optical fibers</topic><topic>Room temperature</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Steady state</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>temperature effects</topic><topic>Temperature measurement</topic><topic>Wavelengths</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morana, Adriana</creatorcontrib><creatorcontrib>Roche, Martin</creatorcontrib><creatorcontrib>Campanella, Cosimo</creatorcontrib><creatorcontrib>Melin, Gilles</creatorcontrib><creatorcontrib>Robin, Thierry</creatorcontrib><creatorcontrib>Marin, Emmanuel</creatorcontrib><creatorcontrib>Boukenter, Aziz</creatorcontrib><creatorcontrib>Ouerdane, Youcef</creatorcontrib><creatorcontrib>Girard, Sylvain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morana, Adriana</au><au>Roche, Martin</au><au>Campanella, Cosimo</au><au>Melin, Gilles</au><au>Robin, Thierry</au><au>Marin, Emmanuel</au><au>Boukenter, Aziz</au><au>Ouerdane, Youcef</au><au>Girard, Sylvain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, the lowest steady state radiation-induced attenuation (RIA) to high cumulated doses (> 10 kGy) at room temperature. In this work, we investigate how the RIA levels and kinetics of a radiation hardened F-doped single-mode optical fiber depend on the irradiation temperature. To achieve this, we performed a systematic study on the combined temperature (from -80°C to 80°C) and steady state X-ray radiation (up to 100 kGy) effects on a F-doped single-mode fiber with a high temperature acrylate coating in the infrared domain. We then discuss the basic mechanisms at the origin of the RIA and its temperature dependence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2023.3239986</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7210-0014</orcidid><orcidid>https://orcid.org/0000-0003-0454-7233</orcidid><orcidid>https://orcid.org/0000-0003-4953-0224</orcidid><orcidid>https://orcid.org/0000-0001-5383-9553</orcidid><orcidid>https://orcid.org/0000-0001-7008-7322</orcidid><orcidid>https://orcid.org/0000-0002-2842-6324</orcidid><orcidid>https://orcid.org/0000-0001-8358-2947</orcidid><orcidid>https://orcid.org/0000-0001-9850-5389</orcidid><orcidid>https://orcid.org/0000-0002-9804-8971</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2023-04, Vol.70 (4), p.1-1 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03978741v1 |
source | IEEE Electronic Library (IEL) |
subjects | Attenuation Engineering Sciences Fluorine Harsh environments High temperature Infrared radiation Irradiation Kinetic theory Optical fiber Optical fibers Radiation effects Radiation hardening radiation induced attenuation radiation resistant optical fibers Room temperature Silica Silicon dioxide Steady state Temperature Temperature dependence temperature effects Temperature measurement Wavelengths X-rays |
title | Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Dependence%20of%20Radiation-Induced%20Attenuation%20of%20a%20Fluorine-doped%20Single-Mode%20Optical%20Fiber%20at%20InfraRed%20Wavelengths&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Morana,%20Adriana&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2023.3239986&rft_dat=%3Cproquest_RIE%3E2803036409%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803036409&rft_id=info:pmid/&rft_ieee_id=10036134&rfr_iscdi=true |