Temperature Dependence of Radiation-Induced Attenuation of a Fluorine-doped Single-Mode Optical Fiber at InfraRed Wavelengths

Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2023-04, Vol.70 (4), p.1-1
Hauptverfasser: Morana, Adriana, Roche, Martin, Campanella, Cosimo, Melin, Gilles, Robin, Thierry, Marin, Emmanuel, Boukenter, Aziz, Ouerdane, Youcef, Girard, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Harsh environments can combine radiations and extreme temperature constraints, which can both degrade the optical performances of silica-based optical fibers. Among the different types of optical fibers, the ones having a core in pure-silica or doped with Fluorine are known to present, generally, the lowest steady state radiation-induced attenuation (RIA) to high cumulated doses (> 10 kGy) at room temperature. In this work, we investigate how the RIA levels and kinetics of a radiation hardened F-doped single-mode optical fiber depend on the irradiation temperature. To achieve this, we performed a systematic study on the combined temperature (from -80°C to 80°C) and steady state X-ray radiation (up to 100 kGy) effects on a F-doped single-mode fiber with a high temperature acrylate coating in the infrared domain. We then discuss the basic mechanisms at the origin of the RIA and its temperature dependence.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2023.3239986