Maximum likelihood estimator for skew Brownian motion: The convergence rate

We give a thorough description of the asymptotic property of the maximum likelihood estimator (MLE) of the skewness parameter of a Skew Brownian Motion (SBM). Thanks to recent results on the Central Limit Theorem of the rate of convergence of estimators for the SBM, we prove a conjecture left open t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2024-06, Vol.51 (2), p.612-642
Hauptverfasser: Lejay, Antoine, Mazzonetto, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a thorough description of the asymptotic property of the maximum likelihood estimator (MLE) of the skewness parameter of a Skew Brownian Motion (SBM). Thanks to recent results on the Central Limit Theorem of the rate of convergence of estimators for the SBM, we prove a conjecture left open that the MLE has asymptotically a mixed normal distribution involving the local time with a rate of convergence of order 1/4. We also give a series expansion of the MLE and study the asymptotic behavior of the score and its derivatives, as well as their variation with the skewness parameter. In particular, we exhibit a specific behavior when the SBM is actually a Brownian motion, and quantify the explosion of the coefficients of the expansion when the skewness parameter is close to −1 or 1.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12694