Precipitation of pure solids in fluid mixtures: A calculation procedure based on Gibbs energy minimization

•This method enables to predict the apparition of pure solid(s) in fluid mixtures.•Solid-fluid equilibria are solved using a Gibbs energy minimization technique.•As a proof of effectiveness, complex binary system phase diagrams were calculated.•This method can be used to build complex phase envelope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2023-04, Vol.269, p.118484, Article 118484
Hauptverfasser: Xu, Xiaochun, Jaubert, Jean-Noël, de Combarieu, Guillaume, Privat, Romain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•This method enables to predict the apparition of pure solid(s) in fluid mixtures.•Solid-fluid equilibria are solved using a Gibbs energy minimization technique.•As a proof of effectiveness, complex binary system phase diagrams were calculated.•This method can be used to build complex phase envelopes of multicomponent system. The possibility of phase equilibria involving solid phases is often ignored in the popular phase-equilibrium calculation tools although one possible way of accounting for the potential presence of solid phases is to assume that solids precipitate as pure compounds. Using this assumption, multicomponent systems may contain a number of pure solid phases equal to the number of components. Predicting the correct number of coexisting solid and fluid phases then becomes a challenge. In this work, the Gibbs energy minimization technique is used. The cases of fluid (vapor or liquid) + solid(s) phase equilibrium and multi-fluid + solid(s) (i.e., 1 or 2 liquid phases and/or vapor phase + solid phases) equilibrium are both described. The effectiveness of the proposed approach is demonstrated by applications to several examples. A Python code is provided to illustrate the proposed algorithms.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2023.118484