Flow curvature manifold and energy of generalized Liénard systems
In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard s...
Gespeichert in:
Veröffentlicht in: | Chaos, solitons and fractals solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112354 |
container_title | Chaos, solitons and fractals |
container_volume | 161 |
creator | Ginoux, Jean-Marc Lebiedz, Dirk Meucci, Riccardo Llibre, Jaume |
description | In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.
•Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system |
doi_str_mv | 10.1016/j.chaos.2022.112354 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03957435v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077922005641</els_id><sourcerecordid>S0960077922005641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwBCxeGRLOdhwnA0OpKCBFYoHZMvaldZUmyG6LyhvxHLwYCUGMTHc6_d_p7iPkkkHKgOXX69SuTBdTDpynjHEhsyMyYYUSCS8KdUwmUOaQgFLlKTmLcQ0ADHI-IbeLpnundhf2ZrsLSDem9XXXOGpaR7HFsDzQrqbLoTWN_0BHK__12ZrgaDzELW7iOTmpTRPx4rdOycvi7nn-kFRP94_zWZVYUfBtwgEQZckYZNZwadBhxgtRmtr1MxC2yEWmJPQH18JkUCiULLNKSPGqpM3ElFyNe1em0W_Bb0w46M54_TCr9DADUUqVCblnfVaMWRu6GAPWfwADPSjTa_2jTA_K9Kisp25GCvs39h6DjtZja9H5gHarXef_5b8BuGR0cQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow curvature manifold and energy of generalized Liénard systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</creator><creatorcontrib>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</creatorcontrib><description>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.
•Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2022.112354</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chaotic Dynamics ; Flow Curvature Method ; Generalized Liénard systems ; Nonlinear Sciences ; Singularly perturbed systems</subject><ispartof>Chaos, solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354</ispartof><rights>2022 Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</citedby><cites>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960077922005641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03957435$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Lebiedz, Dirk</creatorcontrib><creatorcontrib>Meucci, Riccardo</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><title>Flow curvature manifold and energy of generalized Liénard systems</title><title>Chaos, solitons and fractals</title><description>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.
•Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</description><subject>Chaotic Dynamics</subject><subject>Flow Curvature Method</subject><subject>Generalized Liénard systems</subject><subject>Nonlinear Sciences</subject><subject>Singularly perturbed systems</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwBCxeGRLOdhwnA0OpKCBFYoHZMvaldZUmyG6LyhvxHLwYCUGMTHc6_d_p7iPkkkHKgOXX69SuTBdTDpynjHEhsyMyYYUSCS8KdUwmUOaQgFLlKTmLcQ0ADHI-IbeLpnundhf2ZrsLSDem9XXXOGpaR7HFsDzQrqbLoTWN_0BHK__12ZrgaDzELW7iOTmpTRPx4rdOycvi7nn-kFRP94_zWZVYUfBtwgEQZckYZNZwadBhxgtRmtr1MxC2yEWmJPQH18JkUCiULLNKSPGqpM3ElFyNe1em0W_Bb0w46M54_TCr9DADUUqVCblnfVaMWRu6GAPWfwADPSjTa_2jTA_K9Kisp25GCvs39h6DjtZja9H5gHarXef_5b8BuGR0cQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Ginoux, Jean-Marc</creator><creator>Lebiedz, Dirk</creator><creator>Meucci, Riccardo</creator><creator>Llibre, Jaume</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202208</creationdate><title>Flow curvature manifold and energy of generalized Liénard systems</title><author>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaotic Dynamics</topic><topic>Flow Curvature Method</topic><topic>Generalized Liénard systems</topic><topic>Nonlinear Sciences</topic><topic>Singularly perturbed systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Lebiedz, Dirk</creatorcontrib><creatorcontrib>Meucci, Riccardo</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginoux, Jean-Marc</au><au>Lebiedz, Dirk</au><au>Meucci, Riccardo</au><au>Llibre, Jaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow curvature manifold and energy of generalized Liénard systems</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2022-08</date><risdate>2022</risdate><volume>161</volume><spage>112354</spage><pages>112354-</pages><artnum>112354</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.
•Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2022.112354</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03957435v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chaotic Dynamics Flow Curvature Method Generalized Liénard systems Nonlinear Sciences Singularly perturbed systems |
title | Flow curvature manifold and energy of generalized Liénard systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20curvature%20manifold%20and%20energy%20of%20generalized%20Li%C3%A9nard%20systems&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Ginoux,%20Jean-Marc&rft.date=2022-08&rft.volume=161&rft.spage=112354&rft.pages=112354-&rft.artnum=112354&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2022.112354&rft_dat=%3Celsevier_hal_p%3ES0960077922005641%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960077922005641&rfr_iscdi=true |