Flow curvature manifold and energy of generalized Liénard systems

In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354
Hauptverfasser: Ginoux, Jean-Marc, Lebiedz, Dirk, Meucci, Riccardo, Llibre, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112354
container_title Chaos, solitons and fractals
container_volume 161
creator Ginoux, Jean-Marc
Lebiedz, Dirk
Meucci, Riccardo
Llibre, Jaume
description In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems. •Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system
doi_str_mv 10.1016/j.chaos.2022.112354
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03957435v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077922005641</els_id><sourcerecordid>S0960077922005641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwBCxeGRLOdhwnA0OpKCBFYoHZMvaldZUmyG6LyhvxHLwYCUGMTHc6_d_p7iPkkkHKgOXX69SuTBdTDpynjHEhsyMyYYUSCS8KdUwmUOaQgFLlKTmLcQ0ADHI-IbeLpnundhf2ZrsLSDem9XXXOGpaR7HFsDzQrqbLoTWN_0BHK__12ZrgaDzELW7iOTmpTRPx4rdOycvi7nn-kFRP94_zWZVYUfBtwgEQZckYZNZwadBhxgtRmtr1MxC2yEWmJPQH18JkUCiULLNKSPGqpM3ElFyNe1em0W_Bb0w46M54_TCr9DADUUqVCblnfVaMWRu6GAPWfwADPSjTa_2jTA_K9Kisp25GCvs39h6DjtZja9H5gHarXef_5b8BuGR0cQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow curvature manifold and energy of generalized Liénard systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</creator><creatorcontrib>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</creatorcontrib><description>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems. •Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2022.112354</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chaotic Dynamics ; Flow Curvature Method ; Generalized Liénard systems ; Nonlinear Sciences ; Singularly perturbed systems</subject><ispartof>Chaos, solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354</ispartof><rights>2022 Elsevier Ltd</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</citedby><cites>FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960077922005641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03957435$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Lebiedz, Dirk</creatorcontrib><creatorcontrib>Meucci, Riccardo</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><title>Flow curvature manifold and energy of generalized Liénard systems</title><title>Chaos, solitons and fractals</title><description>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems. •Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</description><subject>Chaotic Dynamics</subject><subject>Flow Curvature Method</subject><subject>Generalized Liénard systems</subject><subject>Nonlinear Sciences</subject><subject>Singularly perturbed systems</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwBCxeGRLOdhwnA0OpKCBFYoHZMvaldZUmyG6LyhvxHLwYCUGMTHc6_d_p7iPkkkHKgOXX69SuTBdTDpynjHEhsyMyYYUSCS8KdUwmUOaQgFLlKTmLcQ0ADHI-IbeLpnundhf2ZrsLSDem9XXXOGpaR7HFsDzQrqbLoTWN_0BHK__12ZrgaDzELW7iOTmpTRPx4rdOycvi7nn-kFRP94_zWZVYUfBtwgEQZckYZNZwadBhxgtRmtr1MxC2yEWmJPQH18JkUCiULLNKSPGqpM3ElFyNe1em0W_Bb0w46M54_TCr9DADUUqVCblnfVaMWRu6GAPWfwADPSjTa_2jTA_K9Kisp25GCvs39h6DjtZja9H5gHarXef_5b8BuGR0cQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Ginoux, Jean-Marc</creator><creator>Lebiedz, Dirk</creator><creator>Meucci, Riccardo</creator><creator>Llibre, Jaume</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202208</creationdate><title>Flow curvature manifold and energy of generalized Liénard systems</title><author>Ginoux, Jean-Marc ; Lebiedz, Dirk ; Meucci, Riccardo ; Llibre, Jaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-200ee591104ca25aede42839afd11003c8634750288f3a4087e514c7353b75c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaotic Dynamics</topic><topic>Flow Curvature Method</topic><topic>Generalized Liénard systems</topic><topic>Nonlinear Sciences</topic><topic>Singularly perturbed systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginoux, Jean-Marc</creatorcontrib><creatorcontrib>Lebiedz, Dirk</creatorcontrib><creatorcontrib>Meucci, Riccardo</creatorcontrib><creatorcontrib>Llibre, Jaume</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginoux, Jean-Marc</au><au>Lebiedz, Dirk</au><au>Meucci, Riccardo</au><au>Llibre, Jaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow curvature manifold and energy of generalized Liénard systems</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2022-08</date><risdate>2022</risdate><volume>161</volume><spage>112354</spage><pages>112354-</pages><artnum>112354</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems. •Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2022.112354</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354
issn 0960-0779
1873-2887
language eng
recordid cdi_hal_primary_oai_HAL_hal_03957435v1
source Elsevier ScienceDirect Journals Complete
subjects Chaotic Dynamics
Flow Curvature Method
Generalized Liénard systems
Nonlinear Sciences
Singularly perturbed systems
title Flow curvature manifold and energy of generalized Liénard systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20curvature%20manifold%20and%20energy%20of%20generalized%20Li%C3%A9nard%20systems&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Ginoux,%20Jean-Marc&rft.date=2022-08&rft.volume=161&rft.spage=112354&rft.pages=112354-&rft.artnum=112354&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2022.112354&rft_dat=%3Celsevier_hal_p%3ES0960077922005641%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960077922005641&rfr_iscdi=true