Flow curvature manifold and energy of generalized Liénard systems
In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard s...
Gespeichert in:
Veröffentlicht in: | Chaos, solitons and fractals solitons and fractals, 2022-08, Vol.161, p.112354, Article 112354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In his famous book entitled Theory of Oscillations, Nicolas Minorsky wrote: “each time the system absorbs energy the curvature of its trajectory decreases and vice versa”. By using the Flow Curvature Method, we establish that, in the ε-vicinity of the slow invariant manifold of generalized Liénard systems, the curvature of trajectory curve increases while the energy of such systems decreases. Hence, we prove Minorsky's statement for the generalized Liénard systems. These results are then illustrated with the classical Van der Pol and generalized Liénard singularly perturbed systems.
•Flow curvature manifold•Energy of dissipative systems•Curvature of trajectory curve•Generalized Liénard systems•Van der Pol system |
---|---|
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.1016/j.chaos.2022.112354 |