Ulrich bundles on cubic fourfolds
We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf \mathcal E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an \mathcal E appears as an extension of two Lehn–Lehn–Sorger–van Straten sheav...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2022-01, Vol.97 (4), p.691-728 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf \mathcal E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an \mathcal E appears as an extension of two Lehn–Lehn–Sorger–van Straten sheaves. Then we prove that a general deformation of \mathcal E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/cmh/546 |