Ulrich bundles on cubic fourfolds

We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf \mathcal E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an \mathcal E appears as an extension of two Lehn–Lehn–Sorger–van Straten sheav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2022-01, Vol.97 (4), p.691-728
Hauptverfasser: Faenzi, Daniele, Kim, Yeongrak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf \mathcal E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an \mathcal E appears as an extension of two Lehn–Lehn–Sorger–van Straten sheaves. Then we prove that a general deformation of \mathcal E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6.
ISSN:0010-2571
1420-8946
DOI:10.4171/cmh/546