Time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed polymer scrolls
In this article we present a relevant strategy for a non-trivial time-programmed release of water-soluble macromolecules from biocompatible μ-containers. The system is based on self-scrolled chitosan acetate (CA) fibers, encapsulated in a poly(dimethylsiloxane) matrix. Mass transfer between a fiber...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2016-07, Vol.233, p.39-47 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we present a relevant strategy for a non-trivial time-programmed release of water-soluble macromolecules from biocompatible μ-containers. The system is based on self-scrolled chitosan acetate (CA) fibers, encapsulated in a poly(dimethylsiloxane) matrix. Mass transfer between a fiber and the external environment takes place via the only opened extremity of the fiber. Fluoroscein isocyanate dextran (FID) is initially deposited at the inner surface of the CA fiber according to a programmed pattern. The FID molecules became mobile after the arriving of the swelling front, which propagates along the fiber's axis upon the immersion of the system in aqueous solution. Diffusion of the macromolecules into the environment is enabled by the open-tube geometry of the swollen part of the fiber, while a programmed kinetics of the drug release is due to patterning of the polymer film prior to rolling. The release of the macromolecules can be retarded by a few hours according to the placement of the FID spot with respect to the fibers orifice. A pulsatile release kinetics is demonstrated for a discrete pattern. A few millimeter spacing of the FID spots results in a few hours time interval between the release impulses. Random walk model is plugged in the effective diffusion coefficient for Fick's law and the release kinetics are simulated.
Programmable release kinetics of a fluorescein isocyanate dextran (FID) is achieved via its nonuniform distribution in a biopolymer self-rolled fiber, and directional swelling of the fiber. [Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2016.05.022 |