Naming impairments evoked by focal cortical electrical stimulation in the ventral temporal cortex correlate with increased functional connectivity

High-frequency cortical electrical stimulations (HF-CES) are the gold standard for presurgical functional mapping. In the dominant ventral temporal cortex (VTC) HF-CES can elicit transient naming impairment (eloquent sites), defining a basal temporal language area (BTLA). Whether naming impairments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurophysiologie clinique 2022-08, Vol.52 (4), p.312-322
Hauptverfasser: Aron, Olivier, Krieg, Julien, Brissart, Helene, Abdallah, Chifaou, Colnat-Coulbois, Sophie, Jonas, Jacques, Maillard, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-frequency cortical electrical stimulations (HF-CES) are the gold standard for presurgical functional mapping. In the dominant ventral temporal cortex (VTC) HF-CES can elicit transient naming impairment (eloquent sites), defining a basal temporal language area (BTLA). Whether naming impairments induced by HF-CES within the VTC are related to a specific pattern of connectivity of the BTLA within the temporal lobe remains unknown. We addressed this issue by comparing the connectivity of eloquent and non-eloquent sites from the VTC using cortico-cortical evoked potentials (CCEP). Low frequency cortical electrical stimulations (LF-CES) were used to evoke CCEP in nine individual brains explored with Stereo-Electroencephalography. We compared the connectivity of eloquent versus non eloquent sites within the VTC using Pearson's correlation matrix. Overall, within the VTC, eloquent sites were associated with increased functional connectivity compared to non-eloquent sites. Among the VTC structures, this pattern holds true for the inferior temporal gyrus and the parahippocampal gyrus while the fusiform gyrus specifically showed a high connectivity in both non eloquent and eloquent sites. Our findings suggest that the cognitive effects of focal HF-CES are related to the functional connectivity properties of the stimulated sites, and therefore to the disturbance of a wide cortical network. They further suggest that functional specialization of a cortical region emerges from its specific pattern of functional connectivity. Cortical electrical stimulation functional mapping protocols including LF coupled to HF-CES could provide valuable data characterizing both local and distant functional architecture.
ISSN:0987-7053
1769-7131
DOI:10.1016/j.neucli.2022.06.002