Scaling Description of Creep Flow in Amorphous Solids
Amorphous solids such as coffee foam, toothpaste or mayonnaise display a transient creep flow when a stress $\Sigma$ is suddenly imposed. The associated strain rate is commonly found to decay in time as $\dot{\gamma} \sim t^{-\nu}$, followed either by arrest or by a sudden fluidisation. Various empi...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2022-11, Vol.129 (20), p.208001-208001, Article 208001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amorphous solids such as coffee foam, toothpaste or mayonnaise display a transient creep flow when a stress $\Sigma$ is suddenly imposed. The associated strain rate is commonly found to decay in time as $\dot{\gamma} \sim t^{-\nu}$, followed either by arrest or by a sudden fluidisation. Various empirical laws have been suggested for the creep exponent $\nu$ and fluidisation time $\tau_f$ in experimental and numerical studies. Here, we postulate that plastic flow is governed by the difference between $\Sigma$ and the transient yield stress $\Sigma_t(\gamma)$ that characterises the stability of configurations visited by the system at strain $\gamma$. Assuming the analyticity of $\Sigma_t(\gamma)$ allows us to predict $\nu$ and asymptotic behaviours of $\tau_f$ in terms of properties of stationary flows. We test successfully our predictions using elastoplastic models and published experimental results. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.129.208001 |