Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem

We exhibit a new decomposition of the nonlinearity for the Muskat equation and use it to commute Fourier multipliers with the equation. This allows to study solutions with critical regularity. As a corollary, we obtain the first well-posedness result for arbitrary large data in the critical space H˙...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-04, Vol.399, p.108278, Article 108278
Hauptverfasser: Alazard, Thomas, Nguyen, Quoc-Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We exhibit a new decomposition of the nonlinearity for the Muskat equation and use it to commute Fourier multipliers with the equation. This allows to study solutions with critical regularity. As a corollary, we obtain the first well-posedness result for arbitrary large data in the critical space H˙2(R2)∩W1,∞(R2). Moreover, we prove the existence of solutions for initial data which are not Lipschitz.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2022.108278