Quasilinearization of the 3D Muskat equation, and applications to the critical Cauchy problem
We exhibit a new decomposition of the nonlinearity for the Muskat equation and use it to commute Fourier multipliers with the equation. This allows to study solutions with critical regularity. As a corollary, we obtain the first well-posedness result for arbitrary large data in the critical space H˙...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-04, Vol.399, p.108278, Article 108278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We exhibit a new decomposition of the nonlinearity for the Muskat equation and use it to commute Fourier multipliers with the equation. This allows to study solutions with critical regularity. As a corollary, we obtain the first well-posedness result for arbitrary large data in the critical space H˙2(R2)∩W1,∞(R2). Moreover, we prove the existence of solutions for initial data which are not Lipschitz. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2022.108278 |