ASYMPTOTIC BEHAVIOR OF AGE-STRUCTURED AND DELAYED LOTKA-VOLTERRA MODELS

In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2020-01, Vol.52 (5), p.4284-4313
Hauptverfasser: Perasso, Antoine, Richard, Quentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we investigate some asymptotic properties of an age-structured Lotka-Volterra model, where a specific choice of the functional parameters allows us to formulate it as a delayed problem, for which we prove the existence of a unique coexistence equilibrium and characterize the existence of a periodic solution. We also exhibit a Lyapunov functional that enables us to reduce the attractive set to either the nontrivial equilibrium or to a periodic solution. We then prove the asymptotic stability of the nontrivial equilibrium where, depending on the existence of the periodic trajectory, we make explicit the basin of attraction of the equilibrium. Finally, we prove that these results can be extended to the initial PDE problem.
ISSN:0036-1410
1095-7154
DOI:10.1137/19M1261092