Experimental and theoretical investigation of the vibrational band structure of the 1 Πu5−1 Πg5 high-spin system of C2

Vibrational levels of the recently observed high-spin transition (1 Πu5−1 Πg5) of dicarbon [P. Bornhauser et al., J. Chem. Phys. 142, 094313 (2015)] are explored by applying non-linear double-resonant four-wave mixing and laser-induced fluorescence methods. The deperturbation of the d Πg3, υ = 8 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-03, Vol.146 (11), p.114309-114309
Hauptverfasser: Bornhauser, P., Visser, B., Beck, M., Knopp, G., van Bokhoven, J. A., Marquardt, R., Radi, P. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vibrational levels of the recently observed high-spin transition (1 Πu5−1 Πg5) of dicarbon [P. Bornhauser et al., J. Chem. Phys. 142, 094313 (2015)] are explored by applying non-linear double-resonant four-wave mixing and laser-induced fluorescence methods. The deperturbation of the d Πg3, υ = 8 and 1 Πg5, υ = 3 states results in accurate molecular constants for the υ = 3 “dark” quintet state. In addition, the spin-orbit interaction constant is determined and parameters for the upper Swan level d Πg3, υ = 8 are improved. The first excited vibrational state of 1 Πu5 is observed by performing perturbation-assisted intersystem crossing via “gateway” states in the d Πg3, υ=6∼1 Πg5,υ= 0 system. The rotationally resolved spectra yield 11 transitions to 1 Πu5, υ = 1 that include four spin-substates. Data reduction results in accurate molecular constants of this vibrational level in the shallow potential energy surface of this state. Finally, υ = 1 and 2 of the lower quintet state (1 Πg5) are measured by performing perturbation-assisted double-resonant excitation to the 1 Πu5, υ = 0 state and observing dispersed fluorescence. The obtained molecular constants are compared with high level ab initio computations at the multi-reference configuration interaction (MRCI) level of theory by using a large correlation consistent basis set or, alternatively, by applying the computationally less demanding method of explicitly correlated multi-reference configuration interaction (MRCI-F12). The spectroscopic accuracy of both methods is evaluated by comparison with the experimental findings.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4978334