Partition function of periodic isoradial dimer models

Isoradial dimer models were introduced in Kenyon (Invent Math 150(2):409-439, 2002)--they consist of dimer models whose underlying graph satisfies a simple geometric condition, and whose weight function is chosen accordingly. In this paper, we prove a conjecture of (Kenyon in Invent Math 150(2):409-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2007-07, Vol.138 (3-4), p.451-462
1. Verfasser: DE TILIERE, Béatrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isoradial dimer models were introduced in Kenyon (Invent Math 150(2):409-439, 2002)--they consist of dimer models whose underlying graph satisfies a simple geometric condition, and whose weight function is chosen accordingly. In this paper, we prove a conjecture of (Kenyon in Invent Math 150(2):409-439, 2002), namely that for periodic isoradial dimer models, the growth rate of the toroidal partition function has a simple explicit formula involving the local geometry of the graph only. This is a surprising feature of periodic isoradial dimer models, which does not hold in the general periodic dimer case (Kenyon et al. in Ann Math, 2006). [PUBLICATION ABSTRACT]
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-006-0041-2