The Vázquez maximum principle and the Landis conjecture for elliptic PDE with unbounded coefficients

We develop a new, unified approach to the following two classical questions on elliptic PDE:•the strong maximum principle for equations with non-Lipschitz nonlinearities,•the at most exponential decay of solutions in the whole space or exterior domains. Our results apply to divergence and non-diverg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-08, Vol.387, p.107838, Article 107838
Hauptverfasser: Sirakov, Boyan, Souplet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new, unified approach to the following two classical questions on elliptic PDE:•the strong maximum principle for equations with non-Lipschitz nonlinearities,•the at most exponential decay of solutions in the whole space or exterior domains. Our results apply to divergence and non-divergence operators with locally unbounded lower-order coefficients, in a number of situations where all previous results required bounded ingredients. Our approach, which allows for relatively simple and short proofs, is based on a (weak) Harnack inequality with optimal dependence of the constants in the lower-order terms of the equation and the size of the domain, which we establish.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107838