Revisiting the method of characteristics via a convex hull algorithm

We revisit the method of characteristics for shock wave solutions to nonlinear hyperbolic problems and we propose a novel numerical algorithm—the convex hull algorithm (CHA)—which allows us to compute both entropy dissipative solutions (satisfying all entropy inequalities) and entropy conservative (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-10, Vol.298, p.95-112
Hauptverfasser: LeFloch, Philippe G., Mercier, Jean-Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the method of characteristics for shock wave solutions to nonlinear hyperbolic problems and we propose a novel numerical algorithm—the convex hull algorithm (CHA)—which allows us to compute both entropy dissipative solutions (satisfying all entropy inequalities) and entropy conservative (or multi-valued) solutions. From the multi-valued solutions determined by the method of characteristics, our algorithm “extracts” the entropy dissipative solutions, even after the formation of shocks. It applies to both convex and non-convex flux/Hamiltonians. We demonstrate the relevance of the proposed method with a variety of numerical tests, including conservation laws in one or two spatial dimensions and problem arising in fluid dynamics.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2015.05.043