Decentralized Multi-Agent Pursuit Using Deep Reinforcement Learning

Pursuit-evasion is the problem of capturing mobile targets with one or more pursuers. We use deep reinforcement learning for pursuing an omnidirectional target with multiple, homogeneous agents that are subject to unicycle kinematic constraints. We use shared experience to train a policy for a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-07, Vol.6 (3), p.4552-4559
Hauptverfasser: de Souza, Cristino, Newbury, Rhys, Cosgun, Akansel, Castillo Garcia, Pedro, Vidolov, Boris, Kuli, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pursuit-evasion is the problem of capturing mobile targets with one or more pursuers. We use deep reinforcement learning for pursuing an omnidirectional target with multiple, homogeneous agents that are subject to unicycle kinematic constraints. We use shared experience to train a policy for a given number of pursuers, executed independently by each agent at run-time. The training uses curriculum learning, a sweeping-angle ordering to locally represent neighboring agents, and a reward structure that encourages a good formation and combines individual and group rewards. Simulated experiments with a reactive evader and up to eight pursuers show that our learning-based approach outperforms recent reinforcement learning techniques as well as nonholonomic adaptations of classical algorithms. The learned policy is successfully transferred to the real-world in a proof-of-concept demonstration with three motion-constrained pursuer drones.
ISSN:2377-3766
DOI:10.1109/LRA.2021.3068952