A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes

Articular cartilage has limited intrinsic repair capacity. In order to promote cartilage repair, the amplification and transfer of autologous chondrocytes using three-dimensional scaffolds have been proposed. We have developed an injectable and self-setting hydrogel consisting of hydroxypropyl methy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2005-11, Vol.26 (33), p.6643-6651
Hauptverfasser: Vinatier, C., Magne, D., Weiss, P., Trojani, C., Rochet, N., Carle, G.F., Vignes-Colombeix, C., Chadjichristos, C., Galera, P., Daculsi, G., Guicheux, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Articular cartilage has limited intrinsic repair capacity. In order to promote cartilage repair, the amplification and transfer of autologous chondrocytes using three-dimensional scaffolds have been proposed. We have developed an injectable and self-setting hydrogel consisting of hydroxypropyl methylcellulose grafted with silanol groups (Si-HPMC). The aim of the present work is to assess both the in vitro cytocompatibility of this hydrogel and its ability to maintain a chondrocyte-specific phenotype. Primary chondrocytes isolated from rabbit articular cartilage (RAC) and two human chondrocytic cell lines (SW1353 and C28/I2) were cultured into the hydrogel. Methyl tetrazolium salt (MTS) assay and cell counting indicated that Si-HPMC hydrogel did not affect respectively chondrocyte viability and proliferation. Fluorescent microscopic observations of RAC and C28/I2 chondrocytes double-labeled with cell tracker green and ethidium homodimer-1 revealed that chondrocytes proliferated within Si-HPMC. Phenotypic analysis (RT-PCR and Alcian blue staining) indicates that chondrocytes, when three-dimensionnally cultured within Si-HPMC, expressed transcripts encoding type II collagen and aggrecan and produced sulfated glycosaminoglycans. These results show that Si-HPMC allows the growth of differentiated chondrocytes. Si-HPMC therefore appears as a potential scaffold for three-dimensional amplification and transfer of chondrocytes in cartilage tissue engineering.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2005.04.057