Multisummability for generalized power series
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb {R}_{\mathcal {G}}$ and the reduct of $\mathbb...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2024-04, Vol.76 (2), p.458-494 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both
$\mathbb {R}_{\mathcal {G}}$
and the reduct of
$\mathbb {R}_{\text {an}^*}$
generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the gamma function on
$(0,\infty )$
and the zeta function on
$(1,\infty )$
. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/S0008414X23000111 |