Coulomb-mediated antibunching of an electron pair surfing on sound
Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise—like photonic approaches—to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb int...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-07, Vol.18 (7), p.721-726 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise—like photonic approaches—to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb interactions, which provide a direct route to entangle the orbital or spin degree of freedom. However, controlled interaction of flying electrons at the single-particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realize a controlled-phase gate for in-flight quantum manipulations.
Collisions between two individual electrons in a quantum nanoelectronic circuit revealed a mutual interaction fully mediated by Coulomb repulsion—an essential building block for two-qubit logic implementations with flying electrons. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-023-01368-5 |