The Hilbert–Schinzel specialization property
We establish a version “over the ring” of the celebrated Hilbert Irreducibility Theorem. Given finitely many polynomials in variables, with coefficients in , of positive degree in the last variables, we show that if they are irreducible over and satisfy a necessary “Schinzel condition”, then the fir...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2022-04, Vol.2022 (785), p.55-79 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a version “over the ring” of
the celebrated Hilbert Irreducibility Theorem. Given finitely many polynomials in
variables,
with coefficients in
, of positive degree in the last
variables, we show that if they are irreducible over
and satisfy a necessary “Schinzel condition”, then the first
variables can be specialized in a Zariski-dense subset of
in such a way that irreducibility over
is preserved
for the polynomials in the remaining
variables. The Schinzel condition, which comes from the Schinzel Hypothesis, is that, when specializing the first
variables in
, the product of the polynomials should not always be divisible by some common prime number. Our result also improves on a “coprime” version of the Schinzel Hypothesis: under some Schinzel condition, coprime polynomials
assume coprime values.
We prove our results over many other rings than
, e.g. UFDs and Dedekind domains. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2021-0083 |