The Hilbert–Schinzel specialization property

We establish a version “over the ring” of the celebrated Hilbert Irreducibility Theorem. Given finitely many polynomials in variables, with coefficients in , of positive degree in the last variables, we show that if they are irreducible over and satisfy a necessary “Schinzel condition”, then the fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2022-04, Vol.2022 (785), p.55-79
Hauptverfasser: Bodin, Arnaud, Dèbes, Pierre, König, Joachim, Najib, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a version “over the ring” of the celebrated Hilbert Irreducibility Theorem. Given finitely many polynomials in variables, with coefficients in , of positive degree in the last variables, we show that if they are irreducible over and satisfy a necessary “Schinzel condition”, then the first variables can be specialized in a Zariski-dense subset of in such a way that irreducibility over is preserved for the polynomials in the remaining variables. The Schinzel condition, which comes from the Schinzel Hypothesis, is that, when specializing the first variables in , the product of the polynomials should not always be divisible by some common prime number. Our result also improves on a “coprime” version of the Schinzel Hypothesis: under some Schinzel condition, coprime polynomials assume coprime values. We prove our results over many other rings than , e.g. UFDs and Dedekind domains.
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2021-0083