Hierarchical Self-Assembly and Multidynamic Responsiveness of Fluorescent Dynamic Covalent Networks Forming Organogels
Smart stimuli-responsive fluorescent materials are of interest in the context of sensing and imaging applications. In this project, we elaborated multidynamic fluorescent materials made of a tetraphenylethene fluorophore displaying aggregation-induced emission and short cysteine-rich C-hydrazide pep...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2022-01, Vol.23 (1), p.431-442 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Smart stimuli-responsive fluorescent materials are of interest in the context of sensing and imaging applications. In this project, we elaborated multidynamic fluorescent materials made of a tetraphenylethene fluorophore displaying aggregation-induced emission and short cysteine-rich C-hydrazide peptides. Specifically, we show that a hierarchical dynamic covalent self-assembly process, combining disulfide and acyl-hydrazone bond formation operating simultaneously in a one-pot reaction, yields cage compounds at low concentration (2 mM), while soluble fluorescent dynamic covalent networks and even chemically cross-linked fluorescent organogels are formed at higher concentrations. The number of cysteine residues in the peptide sequence impacts directly the mechanical properties of the resulting organogels, Young’s moduli varying 2500-fold across the series. These materials underpinned by a nanofibrillar network display multidynamic responsiveness following concentration changes, chemical triggers, as well as light irradiation, all of which enable their controlled degradation with concomitant changes in spectroscopic outputsself-assembly enhances fluorescence emission by ca. 100-fold and disassembly quenches fluorescence emission. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.1c01389 |