Uniform Roe algebras of uniformly locally finite metric spaces are rigid
We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivale...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2022-12, Vol.230 (3), p.1071-1100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 3 |
container_start_page | 1071 |
container_title | Inventiones mathematicae |
container_volume | 230 |
creator | Baudier, Florent P. Braga, Bruno M. Farah, Ilijas Khukhro, Ana Vignati, Alessandro Willett, Rufus |
description | We show that if
X
and
Y
are uniformly locally finite metric spaces whose uniform Roe algebras,
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
, are isomorphic as
C
∗
-algebras, then
X
and
Y
are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between
X
and
Y
is equivalent to Morita equivalence between
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
. As an application, we obtain that if
Γ
and
Λ
are finitely generated groups, then the crossed products
ℓ
∞
(
Γ
)
⋊
r
Γ
and
ℓ
∞
(
Λ
)
⋊
r
Λ
are isomorphic if and only if
Γ
and
Λ
are bi-Lipschitz equivalent. |
doi_str_mv | 10.1007/s00222-022-01140-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03796364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732875465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyZ_dJMdS1AoFQew5ZHeTmrJtarKV-u3NsqI3D8PAvN97DA-hawJ3BEDcJwBKaQHDEMKhOJ6gCeGMFoQqcYomWYdCKQLn6CKlDUAWBZ2gxWrnXYhb_BosNt3a1tEkHBw-jPfuC3ehMV3ezu98b_HW9tE3OO1NYxM20eLo1769RGfOdMle_ewpWj0-vM0XxfLl6Xk-WxYNK1lfVMq1jaMC2hbqRnBpZeUoYayVqibCEgaVdA5KLoUysmq54dxKSdqal04JNkW3Y-676fQ--q2JXzoYrxezpR5uwISqWMU_SWZvRnYfw8fBpl5vwiHu8nuaCkalKHlVZoqOVBNDStG631gCemhXj-1qGGZoVx-ziY2mlOHd2sa_6H9c30sQe8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732875465</pqid></control><display><type>article</type><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><source>SpringerLink (Online service)</source><creator>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</creator><creatorcontrib>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</creatorcontrib><description>We show that if
X
and
Y
are uniformly locally finite metric spaces whose uniform Roe algebras,
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
, are isomorphic as
C
∗
-algebras, then
X
and
Y
are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between
X
and
Y
is equivalent to Morita equivalence between
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
. As an application, we obtain that if
Γ
and
Λ
are finitely generated groups, then the crossed products
ℓ
∞
(
Γ
)
⋊
r
Γ
and
ℓ
∞
(
Λ
)
⋊
r
Λ
are isomorphic if and only if
Γ
and
Λ
are bi-Lipschitz equivalent.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-022-01140-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Equivalence ; Geometry ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Metric space ; Propagation</subject><ispartof>Inventiones mathematicae, 2022-12, Vol.230 (3), p.1071-1100</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</citedby><cites>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</cites><orcidid>0000-0002-8675-3657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-022-01140-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-022-01140-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03796364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Khukhro, Ana</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We show that if
X
and
Y
are uniformly locally finite metric spaces whose uniform Roe algebras,
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
, are isomorphic as
C
∗
-algebras, then
X
and
Y
are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between
X
and
Y
is equivalent to Morita equivalence between
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
. As an application, we obtain that if
Γ
and
Λ
are finitely generated groups, then the crossed products
ℓ
∞
(
Γ
)
⋊
r
Γ
and
ℓ
∞
(
Λ
)
⋊
r
Λ
are isomorphic if and only if
Γ
and
Λ
are bi-Lipschitz equivalent.</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Propagation</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyZ_dJMdS1AoFQew5ZHeTmrJtarKV-u3NsqI3D8PAvN97DA-hawJ3BEDcJwBKaQHDEMKhOJ6gCeGMFoQqcYomWYdCKQLn6CKlDUAWBZ2gxWrnXYhb_BosNt3a1tEkHBw-jPfuC3ehMV3ezu98b_HW9tE3OO1NYxM20eLo1769RGfOdMle_ewpWj0-vM0XxfLl6Xk-WxYNK1lfVMq1jaMC2hbqRnBpZeUoYayVqibCEgaVdA5KLoUysmq54dxKSdqal04JNkW3Y-676fQ--q2JXzoYrxezpR5uwISqWMU_SWZvRnYfw8fBpl5vwiHu8nuaCkalKHlVZoqOVBNDStG631gCemhXj-1qGGZoVx-ziY2mlOHd2sa_6H9c30sQe8A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Baudier, Florent P.</creator><creator>Braga, Bruno M.</creator><creator>Farah, Ilijas</creator><creator>Khukhro, Ana</creator><creator>Vignati, Alessandro</creator><creator>Willett, Rufus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8675-3657</orcidid></search><sort><creationdate>20221201</creationdate><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><author>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Khukhro, Ana</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudier, Florent P.</au><au>Braga, Bruno M.</au><au>Farah, Ilijas</au><au>Khukhro, Ana</au><au>Vignati, Alessandro</au><au>Willett, Rufus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>230</volume><issue>3</issue><spage>1071</spage><epage>1100</epage><pages>1071-1100</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We show that if
X
and
Y
are uniformly locally finite metric spaces whose uniform Roe algebras,
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
, are isomorphic as
C
∗
-algebras, then
X
and
Y
are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between
X
and
Y
is equivalent to Morita equivalence between
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
. As an application, we obtain that if
Γ
and
Λ
are finitely generated groups, then the crossed products
ℓ
∞
(
Γ
)
⋊
r
Γ
and
ℓ
∞
(
Λ
)
⋊
r
Λ
are isomorphic if and only if
Γ
and
Λ
are bi-Lipschitz equivalent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-022-01140-x</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-8675-3657</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2022-12, Vol.230 (3), p.1071-1100 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03796364v1 |
source | SpringerLink (Online service) |
subjects | Algebra Equivalence Geometry Hilbert space Mathematics Mathematics and Statistics Metric space Propagation |
title | Uniform Roe algebras of uniformly locally finite metric spaces are rigid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Roe%20algebras%20of%20uniformly%20locally%20finite%20metric%20spaces%20are%20rigid&rft.jtitle=Inventiones%20mathematicae&rft.au=Baudier,%20Florent%20P.&rft.date=2022-12-01&rft.volume=230&rft.issue=3&rft.spage=1071&rft.epage=1100&rft.pages=1071-1100&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-022-01140-x&rft_dat=%3Cproquest_hal_p%3E2732875465%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732875465&rft_id=info:pmid/&rfr_iscdi=true |