Uniform Roe algebras of uniformly locally finite metric spaces are rigid

We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2022-12, Vol.230 (3), p.1071-1100
Hauptverfasser: Baudier, Florent P., Braga, Bruno M., Farah, Ilijas, Khukhro, Ana, Vignati, Alessandro, Willett, Rufus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 3
container_start_page 1071
container_title Inventiones mathematicae
container_volume 230
creator Baudier, Florent P.
Braga, Bruno M.
Farah, Ilijas
Khukhro, Ana
Vignati, Alessandro
Willett, Rufus
description We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between C u ∗ ( X ) and C u ∗ ( Y ) . As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ ∞ ( Γ ) ⋊ r Γ and ℓ ∞ ( Λ ) ⋊ r Λ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.
doi_str_mv 10.1007/s00222-022-01140-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03796364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732875465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyZ_dJMdS1AoFQew5ZHeTmrJtarKV-u3NsqI3D8PAvN97DA-hawJ3BEDcJwBKaQHDEMKhOJ6gCeGMFoQqcYomWYdCKQLn6CKlDUAWBZ2gxWrnXYhb_BosNt3a1tEkHBw-jPfuC3ehMV3ezu98b_HW9tE3OO1NYxM20eLo1769RGfOdMle_ewpWj0-vM0XxfLl6Xk-WxYNK1lfVMq1jaMC2hbqRnBpZeUoYayVqibCEgaVdA5KLoUysmq54dxKSdqal04JNkW3Y-676fQ--q2JXzoYrxezpR5uwISqWMU_SWZvRnYfw8fBpl5vwiHu8nuaCkalKHlVZoqOVBNDStG631gCemhXj-1qGGZoVx-ziY2mlOHd2sa_6H9c30sQe8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732875465</pqid></control><display><type>article</type><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><source>SpringerLink (Online service)</source><creator>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</creator><creatorcontrib>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</creatorcontrib><description>We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between C u ∗ ( X ) and C u ∗ ( Y ) . As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ ∞ ( Γ ) ⋊ r Γ and ℓ ∞ ( Λ ) ⋊ r Λ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-022-01140-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Equivalence ; Geometry ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Metric space ; Propagation</subject><ispartof>Inventiones mathematicae, 2022-12, Vol.230 (3), p.1071-1100</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</citedby><cites>FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</cites><orcidid>0000-0002-8675-3657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-022-01140-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-022-01140-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03796364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Khukhro, Ana</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between C u ∗ ( X ) and C u ∗ ( Y ) . As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ ∞ ( Γ ) ⋊ r Γ and ℓ ∞ ( Λ ) ⋊ r Λ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Propagation</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAk4fVyZ_dJMdS1AoFQew5ZHeTmrJtarKV-u3NsqI3D8PAvN97DA-hawJ3BEDcJwBKaQHDEMKhOJ6gCeGMFoQqcYomWYdCKQLn6CKlDUAWBZ2gxWrnXYhb_BosNt3a1tEkHBw-jPfuC3ehMV3ezu98b_HW9tE3OO1NYxM20eLo1769RGfOdMle_ewpWj0-vM0XxfLl6Xk-WxYNK1lfVMq1jaMC2hbqRnBpZeUoYayVqibCEgaVdA5KLoUysmq54dxKSdqal04JNkW3Y-676fQ--q2JXzoYrxezpR5uwISqWMU_SWZvRnYfw8fBpl5vwiHu8nuaCkalKHlVZoqOVBNDStG631gCemhXj-1qGGZoVx-ziY2mlOHd2sa_6H9c30sQe8A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Baudier, Florent P.</creator><creator>Braga, Bruno M.</creator><creator>Farah, Ilijas</creator><creator>Khukhro, Ana</creator><creator>Vignati, Alessandro</creator><creator>Willett, Rufus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8675-3657</orcidid></search><sort><creationdate>20221201</creationdate><title>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</title><author>Baudier, Florent P. ; Braga, Bruno M. ; Farah, Ilijas ; Khukhro, Ana ; Vignati, Alessandro ; Willett, Rufus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-69fdcf270dd0bc748e86f2133d89b17e13068ff054879a86d4a44e881db45f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudier, Florent P.</creatorcontrib><creatorcontrib>Braga, Bruno M.</creatorcontrib><creatorcontrib>Farah, Ilijas</creatorcontrib><creatorcontrib>Khukhro, Ana</creatorcontrib><creatorcontrib>Vignati, Alessandro</creatorcontrib><creatorcontrib>Willett, Rufus</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudier, Florent P.</au><au>Braga, Bruno M.</au><au>Farah, Ilijas</au><au>Khukhro, Ana</au><au>Vignati, Alessandro</au><au>Willett, Rufus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Roe algebras of uniformly locally finite metric spaces are rigid</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>230</volume><issue>3</issue><spage>1071</spage><epage>1100</epage><pages>1071-1100</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between C u ∗ ( X ) and C u ∗ ( Y ) . As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ ∞ ( Γ ) ⋊ r Γ and ℓ ∞ ( Λ ) ⋊ r Λ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-022-01140-x</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-8675-3657</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2022-12, Vol.230 (3), p.1071-1100
issn 0020-9910
1432-1297
language eng
recordid cdi_hal_primary_oai_HAL_hal_03796364v1
source SpringerLink (Online service)
subjects Algebra
Equivalence
Geometry
Hilbert space
Mathematics
Mathematics and Statistics
Metric space
Propagation
title Uniform Roe algebras of uniformly locally finite metric spaces are rigid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Roe%20algebras%20of%20uniformly%20locally%20finite%20metric%20spaces%20are%20rigid&rft.jtitle=Inventiones%20mathematicae&rft.au=Baudier,%20Florent%20P.&rft.date=2022-12-01&rft.volume=230&rft.issue=3&rft.spage=1071&rft.epage=1100&rft.pages=1071-1100&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-022-01140-x&rft_dat=%3Cproquest_hal_p%3E2732875465%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732875465&rft_id=info:pmid/&rfr_iscdi=true