Uniform Roe algebras of uniformly locally finite metric spaces are rigid

We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2022-12, Vol.230 (3), p.1071-1100
Hauptverfasser: Baudier, Florent P., Braga, Bruno M., Farah, Ilijas, Khukhro, Ana, Vignati, Alessandro, Willett, Rufus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivalence between C u ∗ ( X ) and C u ∗ ( Y ) . As an application, we obtain that if Γ and Λ are finitely generated groups, then the crossed products ℓ ∞ ( Γ ) ⋊ r Γ and ℓ ∞ ( Λ ) ⋊ r Λ are isomorphic if and only if Γ and Λ are bi-Lipschitz equivalent.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-022-01140-x