Uniform Roe algebras of uniformly locally finite metric spaces are rigid
We show that if X and Y are uniformly locally finite metric spaces whose uniform Roe algebras, C u ∗ ( X ) and C u ∗ ( Y ) , are isomorphic as C ∗ -algebras, then X and Y are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between X and Y is equivalent to Morita equivale...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2022-12, Vol.230 (3), p.1071-1100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
X
and
Y
are uniformly locally finite metric spaces whose uniform Roe algebras,
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
, are isomorphic as
C
∗
-algebras, then
X
and
Y
are coarsely equivalent metric spaces. Moreover, we show that coarse equivalence between
X
and
Y
is equivalent to Morita equivalence between
C
u
∗
(
X
)
and
C
u
∗
(
Y
)
. As an application, we obtain that if
Γ
and
Λ
are finitely generated groups, then the crossed products
ℓ
∞
(
Γ
)
⋊
r
Γ
and
ℓ
∞
(
Λ
)
⋊
r
Λ
are isomorphic if and only if
Γ
and
Λ
are bi-Lipschitz equivalent. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-022-01140-x |