Mineral-chemistry and stable-isotope constraints on the magmatism, hydrothermal alteration, and related PGE?(base-metal sulphide) mineralisation of the Mesoarchaean Baula-Nuasahi Complex, India

The Baula-Nuasahi Complex, on the southern flank of the Singhbhum Archaean nucleus in north-eastern India, exposes a series of Mesoarchaean igneous suites. These are (1) a gabbro-anorthosite unit, which is petrographically homogeneous, although mineral-chemistry data hint at a subtle eastward differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2004-10, Vol.39 (5-6), p.583-607
Hauptverfasser: Aug, Thierry, Lerouge, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Baula-Nuasahi Complex, on the southern flank of the Singhbhum Archaean nucleus in north-eastern India, exposes a series of Mesoarchaean igneous suites. These are (1) a gabbro-anorthosite unit, which is petrographically homogeneous, although mineral-chemistry data hint at a subtle eastward differentiation; (2) a peridotite unit (with three chromitite layers) together with (3) a pyroxenite unit which display cumulate textures, modal layering, and (for the peridotite unit) differentiation trends in both mineralogy and mineral chemistry; and (4) the Bangur gabbro (~3.1 Ga), which defines an oblong intrusion, crosscutting the older igneous suites in the southern part of the complex, with a curvilinear NW-trending apophysis, 2 km long and up to 40 m wide. Magmatic breccia comprising ultramafic and chromitite wall-rock clasts in a gabbro matrix is exposed at the contact of the main Bangur gabbro body and also forms the entire Bangur gabbro apophysis. Concentrations of platinum-group minerals (PGMs) are found where the breccia contains abundant chromitite clasts, and two types of platinum-group-element (PGE) mineralisation are recognised. Type 1 (Pt 1.1-14.2, Pd 0.1-2.1 ppm, with an average Pt/Pd=8-9) is a "contact-type" mineralisation which occurs in the breccia at the contact between the Bangur intrusion and its ultramafic host. The PGMs--Pt alloys (isoferroplatinum) and sulphides (braggite, malanite)--are enclosed by pyroxene and plagioclase, reflecting a magmatic origin. Significant wall-rock assimilation by the magma (giving rise to the Bangur gabbro) is indicated by changes in pyroxene composition and by the presence of relicts of chromite (from the host) now altered to secondary "ferritchromite" in the contact zone. Type 2 PGE mineralisation (Pt 0.3-1.6, Pd 1.8-6.0 ppm, with Pt/Pd~0.5-3.0) is restricted to the breccia apophysis of the Bangur gabbro where it occurs in the breccia matrix, associated with an intense hydrothermal alteration which does not exist in the contact zone. PGMs (PGE arsenides, tellurides, bismuthides and antimonides) and, where present, base-metal sulphides (BMSs) form intergrowths with hydrous silicates, reflecting a hydrothermal origin. Oxygen isotope geothermometry documents the main stages of hydrothermal alteration within a decreasing temperature range between 700-1,000 and 500-600 °C, and oxygen, hydrogen and sulphur isotopes show that the hydrothermal fluids were derived from the magma rather than an external source. Pervasi
ISSN:0026-4598
1432-1866
DOI:10.1007/s00126-004-0428-x