Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension

Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-01, Vol.397 (2), p.503-546
1. Verfasser: Leclerc, Gaétan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 2
container_start_page 503
container_title Communications in mathematical physics
container_volume 397
creator Leclerc, Gaétan
description Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets preprint. arXiv:2009.01703 , 2020). In the case where J is not included in a circle, we prove that a large family of probability measures supported on J exhibit polynomial Fourier decay: our result applies in particular to the measure of maximal entropy and to the conformal measure.
doi_str_mv 10.1007/s00220-022-04496-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03782578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2769249112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-3541ae418a7dcfc1201cc8e0c9c1d39f891b62d3ffb48d3103a48e1440380a523</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AVckrlyM3guUGZZNtVZTo_FnTSjDWJppp8K0Sd9e6hjduTlwyXdOLoeQc4QrBMivIwBjkCXJQAglM3lAeih4GhXKQ9IDQMi4RHlMTmJcAIBiUvbI-GFTe0NfXRtpU9HJbu3CrKm9pS-m9c3K1PTRrCOdm62jz030rU-XcbMJ3gV645duFRN2So4qU0d39nP2yfv49m00yaZPd_ej4TSzHESb8YFA4wQWJi9tZZEBWls4sMpiyVVVKJxJVvKqmomi5AjciMKhEMALMAPG--Syy52bWq-DX5qw043xejKc6v0b8Lxgg7zYYmIvOnYdms-Ni61epLXTj6JmuVRMKMR9IusoG5oYg6t-YxH0vlvddauT6O9utUwm3pliglcfLvxF_-P6AiygefA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769249112</pqid></control><display><type>article</type><title>Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension</title><source>Springer Nature - Complete Springer Journals</source><creator>Leclerc, Gaétan</creator><creatorcontrib>Leclerc, Gaétan</creatorcontrib><description>Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets preprint. arXiv:2009.01703 , 2020). In the case where J is not included in a circle, we prove that a large family of probability measures supported on J exhibit polynomial Fourier decay: our result applies in particular to the measure of maximal entropy and to the conformal measure.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04496-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chaotic Dynamics ; Classical and Quantum Gravitation ; Complex Systems ; Dynamical Systems ; Fourier transforms ; Mathematical and Computational Physics ; Mathematical Physics ; Mathematics ; Nonlinear Sciences ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023-01, Vol.397 (2), p.503-546</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-3541ae418a7dcfc1201cc8e0c9c1d39f891b62d3ffb48d3103a48e1440380a523</cites><orcidid>0000-0001-9424-6420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04496-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04496-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03782578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leclerc, Gaétan</creatorcontrib><title>Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets preprint. arXiv:2009.01703 , 2020). In the case where J is not included in a circle, we prove that a large family of probability measures supported on J exhibit polynomial Fourier decay: our result applies in particular to the measure of maximal entropy and to the conformal measure.</description><subject>Chaotic Dynamics</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Dynamical Systems</subject><subject>Fourier transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AVckrlyM3guUGZZNtVZTo_FnTSjDWJppp8K0Sd9e6hjduTlwyXdOLoeQc4QrBMivIwBjkCXJQAglM3lAeih4GhXKQ9IDQMi4RHlMTmJcAIBiUvbI-GFTe0NfXRtpU9HJbu3CrKm9pS-m9c3K1PTRrCOdm62jz030rU-XcbMJ3gV645duFRN2So4qU0d39nP2yfv49m00yaZPd_ej4TSzHESb8YFA4wQWJi9tZZEBWls4sMpiyVVVKJxJVvKqmomi5AjciMKhEMALMAPG--Syy52bWq-DX5qw043xejKc6v0b8Lxgg7zYYmIvOnYdms-Ni61epLXTj6JmuVRMKMR9IusoG5oYg6t-YxH0vlvddauT6O9utUwm3pliglcfLvxF_-P6AiygefA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Leclerc, Gaétan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9424-6420</orcidid></search><sort><creationdate>20230101</creationdate><title>Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension</title><author>Leclerc, Gaétan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-3541ae418a7dcfc1201cc8e0c9c1d39f891b62d3ffb48d3103a48e1440380a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chaotic Dynamics</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Dynamical Systems</topic><topic>Fourier transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Gaétan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leclerc, Gaétan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>397</volume><issue>2</issue><spage>503</spage><epage>546</epage><pages>503-546</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets preprint. arXiv:2009.01703 , 2020). In the case where J is not included in a circle, we prove that a large family of probability measures supported on J exhibit polynomial Fourier decay: our result applies in particular to the measure of maximal entropy and to the conformal measure.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04496-6</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0001-9424-6420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023-01, Vol.397 (2), p.503-546
issn 0010-3616
1432-0916
language eng
recordid cdi_hal_primary_oai_HAL_hal_03782578v1
source Springer Nature - Complete Springer Journals
subjects Chaotic Dynamics
Classical and Quantum Gravitation
Complex Systems
Dynamical Systems
Fourier transforms
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Nonlinear Sciences
Physics
Physics and Astronomy
Polynomials
Quantum Physics
Relativity Theory
Theoretical
title Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Julia%20Sets%20of%20Hyperbolic%20Rational%20Maps%20have%20Positive%20Fourier%20Dimension&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Leclerc,%20Ga%C3%A9tan&rft.date=2023-01-01&rft.volume=397&rft.issue=2&rft.spage=503&rft.epage=546&rft.pages=503-546&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04496-6&rft_dat=%3Cproquest_hal_p%3E2769249112%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769249112&rft_id=info:pmid/&rfr_iscdi=true