Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension

Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-01, Vol.397 (2), p.503-546
1. Verfasser: Leclerc, Gaétan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f : C ^ → C ^ be a hyperbolic rational map of degree d ≥ 2 , and let J ⊂ C be its Julia set. We prove that J always has positive Fourier dimension. The case where J is included in a circle follows from a recent work of Sahlsten and Stevens (Fourier transform and expanding maps on Cantor sets preprint. arXiv:2009.01703 , 2020). In the case where J is not included in a circle, we prove that a large family of probability measures supported on J exhibit polynomial Fourier decay: our result applies in particular to the measure of maximal entropy and to the conformal measure.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04496-6