Embedded topics in the stochastic block model

Communication networks such as emails or social networks are now ubiquitous and their analysis has become a strategic field. In many applications, the goal is to automatically extract relevant information by looking at the nodes and their connections. Unfortunately, most of the existing methods focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2023-10, Vol.33 (5), Article 95
Hauptverfasser: Boutin, Rémi, Bouveyron, Charles, Latouche, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Communication networks such as emails or social networks are now ubiquitous and their analysis has become a strategic field. In many applications, the goal is to automatically extract relevant information by looking at the nodes and their connections. Unfortunately, most of the existing methods focus on analysing the presence or absence of edges and textual data is often discarded. However, all communication networks actually come with textual data on the edges. In order to take into account this specificity, we consider in this paper networks for which two nodes are linked if and only if they share textual data. We introduce a deep latent variable model allowing embedded topics to be handled called ETSBM to simultaneously perform clustering on the nodes while modelling the topics used between the different clusters. ETSBM extends both the stochastic block model (SBM) and the embedded topic model (ETM) which are core models for studying networks and corpora, respectively. The inference is done using a variational-Bayes expectation-maximisation algorithm combined with a stochastic gradient descent. The methodology is evaluated on synthetic data and on a real world dataset.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-023-10265-9