Preponderance of additive and non-additive variances for growth, ecophysiological and wood traits in Eucalyptus hybrid genotype-by-spacing interaction
The objective of this study was to better understand the underlying gene action in eucalyptus, under different plantation densities, for a different set of traits: growth, bark thickness, ecophysiological, and wood chemical property traits. We estimated the magnitude and relative proportion of the...
Gespeichert in:
Veröffentlicht in: | Tree genetics & genomes 2022-08, Vol.18 (4), Article 32 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
The objective of this study was to better understand the underlying gene action in eucalyptus, under different plantation densities, for a different set of traits: growth, bark thickness, ecophysiological, and wood chemical property traits. We estimated the magnitude and relative proportion of the various genetic variance components using a eucalyptus genotype by spacing (G × S) interaction experiment. A clonally replicated progeny test including 888 clones belonging to 64 full-sib families of
Eucalyptus urophylla
×
Eucalyptus grandis
hybrid was used to estimate genetic parameters using genomic information to assess relationship matrix. Two densities (833 and 2500 trees/ha) were used representing contrasted environments in terms of individual tree available resource. Results showed that for height and circumference, additive-by-spacing (A × S) interaction variance increased from 18 to 55 months old, while dominance-by-spacing (D × S) interaction variance decreased. For bark thickness, specific leaf area, nitrogen, calcium, and magnesium, A × S interaction variance was preponderant. For wood chemical properties, except with Klason lignin, genetic additive effects strongly interacted with spacing compared to non-additive effects. |
---|---|
ISSN: | 1614-2942 1614-2950 |
DOI: | 10.1007/s11295-022-01563-w |