Spectral energy dynamics in magnetohydrodynamic turbulence
Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-09, Vol.95 (11), p.114502.1-114502.4, Article 114502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and total energy, Ek=E(K)k+E(M)k, are observed to scale self-similarly in the inertial range as E(R)k approximately k(-7/3), E(k)approximately k(-5/3) (isotropic case) and E(R)(k(perpendicular) approximately k(-2)(perpendicular), E(k(perpendicular))approximately k(-3/2)(perpendicular) (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfvén effect yields E(R)k approximately kE2(k), which is confirmed by the simulations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.95.114502 |