Simultaneous mapping of SO2, SO, NaCl in Io’s atmosphere with the Submillimeter Array
Many of the key properties of Io's atmosphere, such as its spatial distribution, temperature, column density and composition, are still not fully assessed despite decades of extensive observations. The contribution of the possible gas sources to the atmospheric replenishment are then still uncl...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2010-07, Vol.208 (1), p.353-365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many of the key properties of Io's atmosphere, such as its spatial distribution, temperature, column density and composition, are still not fully assessed despite decades of extensive observations. The contribution of the possible gas sources to the atmospheric replenishment are then still unclear. This paper presents disk-resolved observations performed with the Submillimeter Array (SMA) at 345GHz of atmospheric rotational lines of the main atmospheric species SO2, and, for the first time, of the minor species SO and NaCl. All these species appear concentrated on the anti-jovian hemisphere, but do not share the same spatial distribution. The obtained maps and line-averaged fluxes are compared to realistic models simulating gas sources including volcanic plume outgassing, SO2 frost sublimation and photolysis. Arguments in favor of each sources are examined and compared to observations, putting constraints on their relative roles for each species. While sublimation clearly appears as the favored major source for SO2, SO2 photolysis may account for most of the production of SO. Using constraints on the volcanic plumes distribution from Galileo results, we find that direct volcanic input can only contribute for a minor fraction of atmospheric SO2, but represent a more significant source for SO atmosphere, and is likely to be the only source for NaCl. Temperature and column densities findings are also presented for SO2, and compare well to previously published observations and atmospheric models. |
---|---|
ISSN: | 0019-1035 1090-2643 |
DOI: | 10.1016/j.icarus.2010.02.009 |