The nanomechanical properties of non-crosslinked calcium aluminosilicate hydrate: The influences of tetrahedral Al and curing age
Calcium aluminosilicate hydrate (C-A-S-H) is the binding phase of both blended cement-based and alkali-activated materials. The intrinsic mechanical properties of non-cross-linked C-A-S-H are important while experimentally unvalidated. Here, the properties are for the first time measured using high-...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2022-09, Vol.159, p.106900, Article 106900 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Calcium aluminosilicate hydrate (C-A-S-H) is the binding phase of both blended cement-based and alkali-activated materials. The intrinsic mechanical properties of non-cross-linked C-A-S-H are important while experimentally unvalidated. Here, the properties are for the first time measured using high-pressure X-ray diffraction. The incompressibility and bulk modulus K0 of C-A-S-Hs are correlated to their nanostructure and stability using nuclear magnetic resonance and X-ray absorption spectroscopies. Al coordination in stable C-A-S-H (Al/Si = 0.1) cured for 546 days is purely tetrahedral (AlIV), while in metastable C-A-S-H (Al/Si = 0.05) cured for only 182 days is both AlIV and pentahedral (AlV). The stable C-A-S-H is stiffer along the a,b,c-axis with higher K0 relative to C-S-H. Short-curing-induced metastable C-A-S-H (Al/Si = 0.05) shows expanded interlayer and softer c-axis, thus lower K0 than C-S-H and the stable C-A-S-H. Our results highlight the stiffening effect of AlIV incorporation and the negative influences of insufficient curing on the nanomechanical properties of non-cross-linked C-A-S-H at Ca/Si = 1. |
---|---|
ISSN: | 0008-8846 |
DOI: | 10.1016/j.cemconres.2022.106900 |