Minimal Lagrangian submanifolds of the complex hyperquadric
We introduce a structural approach to study Lagrangian submanifolds of the complex hyperquadric in arbitrary dimension by using its family of non-integrable almost product structures. In particular, we define local angle functions encoding the geometry of the Lagrangian submanifold at hand. We prove...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2020-08, Vol.63 (8), p.1441-1462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a structural approach to study Lagrangian submanifolds of the complex hyperquadric in arbitrary dimension by using its family of non-integrable almost product structures. In particular, we define local angle functions encoding the geometry of the Lagrangian submanifold at hand. We prove that these functions are constant in the special case that the Lagrangian immersion is the Gauss map of an isoparametric hypersurface of a sphere and give the relation with the constant principal curvatures of the hypersurface. We also use our techniques to classify all minimal Lagrangian submanifolds of the complex hyperquadric which have constant sectional curvatures and all minimal Lagrangian submanifolds for which all local angle functions, respectively all but one, coincide. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-019-9551-2 |